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Abstract: We develop algebraic methods for finding loop corrections to the N = 4

SYM dilatation generator, within the noncompact psu(1, 1|2) sector. This sector gives a

’t Hooft coupling λ-dependent representation of psu(1, 1|2) × psu(1|1)2. At first working

independently of the representation, we present an all-order algebraic ansatz for the λ-

dependence of this Lie algebra’s generators. The ansatz solves the symmetry constraints

if an auxiliary generator, h, satisfies certain simple commutation relations with the Lie

algebra generators. Applying this to the psu(1, 1|2) sector leads to an iterative solution for

the planar three-loop dilatation generator in terms of leading order symmetry generators

and h, which passes a thorough set of spectral tests. We argue also that this algebraic

ansatz may be applicable to the nonplanar theory as well.
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1. Introduction

While AdS/CFT provides a powerful weak-strong duality, finding the weak- to strong-

coupling interpolation of unprotected physical quantities generically remains a very difficult

problem. However, for planar N = 4 SYM and its string theory dual, integrability [1, 2]

leads to great simplifications. Here finding anomalous dimensions of single-trace local op-

erators is equivalent to the spectral problem of an integrable spin chain [1, 3, 4]. Due to

integrability, the spectral problem at weak and strong coupling can be reduced to solving

a system of Bethe equations [5 – 8]. In fact, superconformal symmetry fixes the asymptotic

Bethe equations up to an overall phase [9, 10], which is constrained by crossing symme-

try [11]. Following a proposal for the phase at large λ [12], an all-order solution for the

phase was found [13] simultaneously and completely consistently with a four-loop gauge

theory calculation of the cusp anomalous dimension [14].

Now through an integral equation [15, 13], the asymptotic Bethe equations appar-

ently give the planar cusp anomalous dimension’s interpolation from weak to strong cou-

pling [16 – 27]. The asymptotic Bethe equations also pass multiple tests in the near-flat-

space limit [28 – 30]. Furthermore, the asymptotic spectrum of BPS bound states [31] is

consistently reflected by the analytic structure of the phase [32, 33]. Finally, recent work

has focused on the scaling function for the minimal anomalous dimensions of long oper-

ators with Lorentz spin growing exponentially with twist [34, 35]. At strong coupling,

the scaling function (in a more specialized limit) can be computed using a relation to the

O(6) sigma model [36], as has been checked at two loops [37]. From the asymptotic Bethe

equations,[38] derived a generalized integral equation for the scaling function, which inter-

polates from weak to strong coupling [39] in perfect agreement with the previous results.

For additional related work see [40 – 43].

Despite these impressive results, there are questions that remain challenging even for

the Bethe ansatz approach. Integrability is an assumption, and it seems that other methods

will be required to verify that integrability is preserved by quantum corrections for all

values of λ. Also, finite-length corrections are required both at strong [44 – 47] and weak

coupling [48]. These corrections are potentially addressable via thermodynamic Bethe

ansatz methods [49, 50]. For recent studies related to the giant magnon [51], see [52 – 56].

An alternative approach uses algebraic curve technology [57]. However, even with recent

progress the finite-length corrections still present a great challenge.

These considerations encourage additional approaches to the AdS/CFT spin chain.

In this work, we will give evidence that the spin chain Hamiltonian1 and the other local

spin-chain symmetry generators2 provide a promising direction for new insights.

Initially, a spin chain Hamiltonian-based approach appears daunting. Beyond the

elegant complete one-loop gauge theory dilatation generator [58], the dilatation genera-

tor is known only to finitely many loops in subsectors. For compact sectors with finite-

dimensional representations on each spin chain site, this includes the planar su(2|3) sector

dilatation generator to three loops [59] and the planar su(2) sector dilatation generator

1Gauge theory dilatation generator.
2Gauge theory superconformal symmetry generators.
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to four loops [60]. While these results for compact sectors have given essential input or

verification for the Bethe ansatz, they reveal no simple structure for the Hamiltonian. Fur-

thermore, for noncompact sectors with infinite-dimensional modules on each spin-chain site

it seems impossible to extend direct field theory calculations of the dilatation generator,

such as [61], beyond low-loop order.

Despite these apparent challenges, the Hamiltonian-based approach is a viable path

even for noncompact sectors because superconformal symmetry provides powerful con-

straints. Lie algebra (superconformal) constraints in N = 4 SYM have already been shown

to be very strong in multiple cases. Above we referred to the most famous example of

the AdS/CFT S-matrix, which is fixed up to an overall phase by two copies of extended

psu(2|2) symmetry. Also, combined with some basic properties of Feynman diagrams, Lie

algebra constraints completely fix the planar dilatation generator at three loops within the

su(2|3) sector [59]. In this work, we will ultimately conclude that the same statement likely

applies at three loops even within the noncompact psu(1, 1|2) sector.

Previous work [62] showed that the psu(1, 1|2) sector Lie algebra representation has

simple iterative structure at next-to-leading order. This has two main parts. First, the

NLO corrections to psu(1, 1|2) sector symmetry generators are commutators of the leading

order generators with an auxiliary generator:3

1

λ
JNLO = ±[JLO,X], (1.1)

where JNLO includes a factor of λ and the sign of the commutator is different for generators

corresponding to positive or negative Lie algebra roots. Second, X is built iteratively from

certain leading order supercharges, Q̂a and Ŝa, and an auxiliary generator h,

X =
1

2
εab {Q̂b

LO, [Ŝ
a
LO, h]} + h.c. (1.2)

We argue here that this is not a low order accident. The key result of this work is

that algebraically, this next-to-leading order solution naturally lifts to a consistent all-order

solution. We simply replace (1.1) with an equation that is continuous in λ,

∂

∂λ
J(λ) = ±[J(λ),X(λ)]. (1.3)

In other words, X(λ) generates (plus/minus) translations in λ for the local spin-chain sym-

metry generators.4 Correspondingly, the leading order result (1.2) lifts to the continuous

version

X(λ) =
1

2
εab {Q̂b(λ), [Ŝa(λ), h(λ)]} + h.c. (1.4)

Note that h is also a function of λ, and the leading order expression (1.2) depends only

on h(0). While we do not find an explicit algebraic solution for h, we present two simple

3We have changed the normalization of some generators as well as notation, as explained in section 2

and appendix A.
4Actually only for raising or lowering generators. The action on the Cartan generator corresponding to

the dilatation generator is given implicitly by commutators of the off-diagonal generators. The remaining

Cartan generators are λ-independent.
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Serre-relation-like equations that are linear in h(λ). When satisfied, these equations ensure

that all Lie algebra symmetry constraints remain satisfied after shifts in λ generated by

X. As anticipated in [63], the su(2) automorphism B of psu(1, 1|2) plays a key role; the

supercharges Q̂b and Ŝa are doublets with respect to the B automorphism, and X consists

of a B-singlet combination.

Consequently, obtaining the perturbative corrections to the local symmetry generators

reduces to a simple iterative procedure. At each step in the iteration (at each loop),

we must solve the two equations for the next correction to h. Substituting this solution

into (1.4) gives the next contribution to X. Then the next correction to the spin-chain

symmetry generators follows from integrating (1.3). This procedure gives the corrections

to the dilatation generator completely in terms of leading order supercharges and h.

The second main result of this work is a solution for h at next-to-leading order, which is

sufficient to give a proposal for the three-loop planar psu(1, 1|2) sector dilatation generator.

This proposal passes thorough spectral tests, which is strong evidence that this is the correct

field theory solution. Moreover, we find a simple homogeneous solution for h corresponding

to the first nontrivial contribution from the Bethe ansatz phase, which appears at four loops

in gauge theory. These results lead us to conjecture that the planar gauge theory spin chain

realizes the all-order algebraic proposal, at least asymptotically.

Because the all-order solution is algebraic, the next two sections of this work do not

assume a specific representation. In section 2 we review the extended algebra associated

with this sector. In section 3 we present the all-order algebraic solution, and prove that it is

in fact a solution. We apply this algebraic ansatz in section 4 to give the representation for

the psu(1, 1|2) sector up to NNLO for the symmetry generators, including the three-loop

planar dilatation generator. This section also includes the solution for h corresponding to

the leading phase contribution. The all-order proposal may be general enough even for

the complete nonplanar symmetry generators, as described also in section 4. section 5

is devoted to verifying our proposal for the planar three-loop dilatation generator. As

explained in section 6, it is possible to give two generalizations of the algebraic solution,

still keeping the essential idea of some generator(s) of translations in λ, but not requiring

the generator(s) to be built iteratively as in (1.4). These generalizations are not presented

until then because they are not needed for the planar psu(1, 1|2) sector, at least not until

four loops. Finally, section 7 summarizes our results and discusses many questions that

follow naturally. appendix A reviews the restriction of the full theory to the psu(1, 1|2)
sector and relates the notation of this work to that of the previous works [62 – 64], and

appendix B gives the Chevalley-Serre basis for the Lie algebra. Some details of the proof

of section 3 are relegated to appendix C, the complete solution for h at NLO is given in

appendix D, and appendix E presents a class of homogeneous solutions for h at NLO.

2. The algebra

We begin with a review of the extended subalgebra of psu(2, 2|4) that acts within the

psu(1, 1|2) sector, u(2) ⋉ psu(1, 1|2)× psu(1|1)2 ⋉ R. We use the notation of [63], with two

key changes. First, this algebra admits a further extension by a triplet of central charges.

– 4 –



J
H
E
P
0
7
(
2
0
0
8
)
1
1
4

Since these central charges vanish for the gauge theory, for simplicity we will rarely discuss

them in this work.5 Second, for the gauge theory representation of this algebra we rescale

the psu(1|1)2 generators by 4πg in order that all generators expand in even powers of g.

Therefore, instead of g, we will mostly use the ’t Hooft coupling, λ = (4πg)2.6 While

the explicit gauge theory representation does not appear until section 4, λ enters the

algebra relations through a relationship between the psu(1, 1|2) and psu(1|1)2 subalgebras,

as explained below.

2.1 Lie algebra generators

The extended algebra includes

• A u(2) automorphism generated by su(2) generators Bab = Bba and a u(1) generator

L

• The nonextended psu(1, 1|2) algebra generated by

– Rab = Rba, which generate an su(2) subalgebra

– Jαβ = Jβα, which generate an su(1, 1) subalgebra

– 8 supercharges Qaβc, which transform as doublets with respect to Rad, Jβǫ and

Bcf

• Two psu(1|1) algebras, generated by (Q̂<, Ŝ>) and (Q̂>, Ŝ<). These supercharges

transform as doublets under su(2)B, Q̂a and Ŝb.

• H, a shared central charge of psu(1|1)2 and psu(1, 1|2)

Note that we use Latin indices (or 1, 2) for su(2)R, Greek indices (or +, -) for su(1, 1)J,

and Gothic indices (or <, >) for su(2)B.

Throughout this work L, Rab and Bab will be λ-independent. However, the following

generators will be functions of λ:

Jαβ(λ), Qaβc(λ), Q̂a(λ), Ŝa(λ), H(λ). (2.1)

Importantly, for the gauge theory representation H is identified with the anomalous part

of the dilatation generator, δD. We therefore relate these two generators and the Cartan

element of the su(1, 1) subalgebra J+−,

λH(λ) = δD(λ), J+−(λ) = J+−(0) +
1

2
δD(λ). (2.2)

The factor of λ appearing in the first equation is a consequence of the rescaling mentioned

above. Anticipating perturbative expansions of later sections, we will write J+−
0 for J+−(0),

and use the subscript 0 similarly for other generators.

5They are included in appendix B, where they are required for the complete Chevalley-Serre basis of the

algebra. Also, as discussed in section 7, these extra central charges possibly would be useful for obtaining

a natural embedding of the all-order algebraic solution.
6In section 5 we switch back to g to simplify checks of anomalous dimensions at three loops.
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The non-Cartan generators can be split into raising and lowering generators. We use

J+ to represent any of the following eight generators of the algebra,

R11, J++, Qa+b, Q̂c, (2.3)

and J− to represent any of the conjugate generators,

R22, J−−, Qa−b, Ŝc. (2.4)

In the gauge theory one encounters highest-weight representations. Then the highest-

weight states are annihilated by all of the J−, and descendants are generated using the

J+. According to this convention, the J+ are the lowering generators.

2.2 Commutation relations

The u(1) automorphism generator L commutes with all but the psu(1|1)2 generators, which

instead transform with charge ±1,

[L, Q̂a] = Q̂a, [L, Ŝa] = −Ŝa. (2.5)

Since all of the generators (B, R, J) associated with the rank-one subalgebras have

canonical transformation rules, we describe these commutators all at once. Let JAB be

any su(2) or su(1, 1) generator, and let XC be any generator carrying a single index with

respect to the su(2) or su(1, 1). Then

[JAB , JCD] = εCBJAD − εADJCB , [JAB ,XC ] =
1

2
εCAXB +

1

2
εCBXA. (2.6)

Since the extended algebra is a product, psu(1, 1|2) and psu(1|1)2 generators commute.

Also, due to the shared central charge (2.2), J+−
0 commutes with all psu(1|1)2 generators,

includingH(λ). To complete the description of the nonvanishing commutators we need only

to specify the anticommutators of the supercharges within each subalgebra. For psu(1, 1|2)
they are

{Qaγe(λ),Qbδf(λ)} = εγδεefRab − εabεefJγδ(λ), (2.7)

and the psu(1|1)2 relations are

{Q̂a(λ), Ŝb(λ)} =
1

2
εabH(λ). (2.8)

Note that anticommutators between the Q̂ vanish, as do those between the Ŝ.

Also, see appendix B for the Chevalley-Serre basis of the psu(1, 1|2) subalgebra.

3. The all-order algebraic solution

Here we present the algebraic proposal and prove that it yields representations of the

extended algebra described in the previous section.

3.1 Details of the proposal

Our ansatz for the solution involves three main steps.

– 6 –
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I. Generator of λ-translations. There is a B and R singlet X that generates positive

(negative) translations in λ for lowering (raising) generators:

∂

∂λ
J±(λ) = ±[J±(λ),X(λ)]. (3.1)

II. Iterative structure. X(λ) can be constructed simply from psu(1|1)2 generators and

a single auxiliary generator, h(λ):

Xab(λ) = {Q̂b(λ), [Ŝa(λ), h(λ)]}, X(λ) = εabX
ab(λ) +

1

2
[H(λ), h(λ)]. (3.2)

h also is a B and R singlet, and h commutes with J+−
0 . This ensures that X also has these

properties.

III. Equations for h. h(λ) satisfies the following equations7

{Q̂a, [Qc−b, h]} + {Q̂b, [Qc−a, h]} = 0, {Ŝa, [Qc+b, h]} + {Ŝb, [Qc+a, h]} = 0,

{Qa+c, [Qb−d, h]} =
1

2
εcdRab − 1

2
εabBcd− 1

4
εabεcdL + λ εabXcd. (3.3)

We usually consider a Hermitian representation for the algebra with h = h†, or a represen-

tation related by a simple similarity transformation to a Hermitian one. For the Hermitian

case, the second equation on the first line of (3.3) is related by Hermitian conjugation to

the first, and there are only two (multicomponent) independent equations for h, as stated

above. When we refer to the first equation for h, therefore, this should be understood as

either equation on the first line, and “the second equation for h” will label the equation on

the second line, with nonvanishing right side.

Since ±X is the generator of translations in λ for the non-Cartan elements of the

algebra, given a solution at λ0 we can integrate to obtain the solution at different values of

λ. In particular, setting λ0 = 0 (for which the gauge theory representation of the algebra

is known) leads to

J±(λ) = U(∓X, λ)J±
0 U

†(±X, λ), U(X, λ) = P

{

exp

[
∫ λ

0
dλ′ X(λ′)

]}

. (3.4)

Path ordering is required since a priori X(λ) and X(λ′) do not commute for λ 6= λ′. The

element of the algebra not included in this definition that has λ-dependence is the di-

latation generator (central charge), and it is defined implicitly since it is proportional to

anticommutators of psu(1|1)2 supercharges.

3.2 Proof that the algebra is satisfied

In this section, we simply prove that the structure of the algebraic proposal is sufficient

to guarantee that X generates algebra-satisfying translations in λ for the raising/lowering

generators. Many of the steps used below were introduced in [62, 64]. The key difference

7Here and frequently throughout this work we suppress the argument λ.

– 7 –



J
H
E
P
0
7
(
2
0
0
8
)
1
1
4

here is that these steps are used now to prove the consistency of a proposal at all orders,

rather than just at next-to-leading order.

It is useful to simplify X (3.2) as

X = {Q̂>, [Ŝ<, h]} − {Q̂<, [Ŝ>, h]} +
1

2
[H, h]

= {Q̂>, [Ŝ<, h]} − {Q̂<, [Ŝ>, h]} + [{Q̂<, Ŝ>}, h]

= {Q̂>, [Ŝ<, h]} + {Ŝ>, [Q̂<, h]}. (3.5)

To reach the second line we used (2.8), and applying the Jacobi identity and combining

terms yields the last line. Alternatively, X can be simplified to

X = −{Q̂<, [Ŝ>, h]} − {Ŝ<, [Q̂>, h]}. (3.6)

First, since X is a B and R singlet, translations in λ generated by X preserve these

λ-independent su(2) symmetries. For the remaining commutators, we assume that the

algebra relations are satisfied at λ = λ0. We will then show that acting with ∂/∂λ on

both sides of the algebra relations at λ = λ0 yields identities. This guarantees that the

integration described above (3.4) yields the λ-dependence of solutions.

We will prove this by considering four types of commutators. The commutators not

included in these groups are guaranteed to be satisfied if all of these groups are satisfied,

as explained in appendix B.

• Commutators between two lowering (raising) generators

• Commutators between a lowering psu(1|1)2 supercharge and a raising psu(1|1)2 su-

percharge

• Commutators between a lowering (raising) psu(1, 1|2) supercharge and a

raising (lowering) psu(1|1|)2 supercharge

• Commutators between a lowering psu(1, 1|2) supercharge and a raising psu(1, 1|2)
supercharge

Commutators between two lowering (raising) generators. Consider the commu-

tator8 between J+
i and J+

j at an initial value of λ = λ0 such that the commutation relations

are satisfied,

[J+
i (λ0), J

+
j (λ0)] = fk

ijJ
+
k (λ0). (3.7)

Substituting commutators with X for derivatives as specified by (3.1) and using the Jacobi

identity results in

∂

∂λ
[J+

i (λ), J+
j (λ)]|λ=λ0

= [[J+
i (λ0), J

+
j (λ0)],X(λ0)]

= fk
ij[J

+
k (λ0),X(λ0)]

=
∂

∂λ
fk

ijJ
+
k (λ)|λ=λ0

, (3.8)

8We use commutator to refer to a commutator or anticommutator depending on the statistics of the

generators. The argument proceeds similarly in the fermionic case.
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as required. The proof for the commutator involving two raising generators proceeds sim-

ilarly.

Anticommutators between Q̂ and Ŝ. The B-singlet component of these commutators

defines H, and the only algebraic requirement here will be that H is simply related to J+−

as in (2.2). This will be verified below. The other three independent commutation relations

of this type (2.8) form a B-triplet:

{Q̂{a, Ŝb}} = 0. (3.9)

So, using B symmetry it is sufficient to consider the ≫ component. Taking the derivative,

evaluating at λ0. and again substituting (3.1) yields

∂

∂λ
{Q̂>(λ), Ŝ>(λ)}|λ=λ0

= {[Q̂>(λ0),X(λ0)], Ŝ
>(λ0)} − {Q̂>(λ0), [Ŝ

>(λ0),X(λ0)]}

= 2{[Q̂>(λ0),X(λ0)], Ŝ
>(λ0)} − [{Q̂>(λ0), Ŝ

>(λ0)},X(λ0)]

= 2{[Q̂>(λ0),X(λ0)], Ŝ
>(λ0)}. (3.10)

We used the Jacobi identity to reach the second line, and the vanishing anticommutator

of Q̂> and Ŝ> at λ0 to reach the last line. Next, substitute (3.5) in the commutator that

appears on the right side of the last line,

[Q̂>(λ0),X(λ0)] = [Q̂>(λ0), {Q̂>(λ0), [Ŝ
<(λ0), h(λ0)]}]

+[Q̂>(λ0), {Ŝ>(λ0), [Q̂
<(λ0), h(λ0)]}]

= [Q̂>(λ0), {Ŝ>(λ0), [Q̂
<(λ0), h(λ0)]}]. (3.11)

The last equality follows from the nilpotency of Q̂>(λ0).
9 Then, since Q̂>(λ0) and Ŝ>(λ0)

anticommute, (3.10) vanishes by the nilpotency of Ŝ>(λ0),

2{[Q̂>(λ0),X(λ0)], Ŝ
>(λ0)} = 2{[Q̂>(λ0), {Ŝ>(λ0), [Q̂

<(λ0), h(λ0)]}], Ŝ>(λ0)}
= −2{[Ŝ>(λ0), {Ŝ>(λ0), [Q̂

<(λ0), h(λ0)]}], Q̂>(λ0)}
= −2{0, Q̂>(λ0)}
= 0. (3.12)

Therefore, by B symmetry all three equations of (3.9) are invariant under shifts in λ

generated by X.

For later convenience, we note the three analogous equations to (3.11)

[Q̂<,X] = −[Q̂<, {Ŝ<, [Q̂>, h]}], [Ŝ>,X] = [Ŝ>, {Q̂>, [Ŝ<, h]}],
[Ŝ<,X] = −[Ŝ<, {Q̂<, [Ŝ>, h]}]. . (3.13)

These equations are satisfied for any value of the argument of the generators (which is

suppressed), as they follow from the definition of X and the psu(1|1)2 algebra.

9Any expression of the form [Q̂>(λ0), {Q̂>(λ0), S}] vanishes since upon expanding we obtain

[Q̂>(λ0), {Q̂>(λ0), S}] = (Q̂>(λ0))
2S − Q̂

>(λ0)SQ̂
>(λ0) + Q̂

>(λ0)SQ̂
>(λ0) − S(Q̂>(λ0))

2 = 0.

Similarly, the opposite statistics version {Q̂>(λ0), [Q̂
>(λ0), J ]} also vanishes The vanishing of these expres-

sions only requires the nilpotency of Q̂>(λ0), so they generalize for any nilpotent supercharge.

– 9 –
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Anticommutators between Q− and Q̂ (or Q+ and Ŝ). There are 16 commutators

of this form that must be satisfied,

{Qa−b, Q̂c} = 0, {Qa+b, Ŝc} = 0. (3.14)

We will only consider the first set of equations, since the proof for the second set is similar.

Furthermore, for the first set of equations and by R and B symmetry it is sufficient to

consider the requirement

{Qa−<, Q̂>} = 0. (3.15)

Following the now standard steps gives

∂

∂λ
{Qa−<(λ), Q̂>(λ)}|λ=λ0

= −{[Qa−<(λ0),X(λ0)], Q̂
>(λ0)}

+{Qa−<(λ0), [Q̂
>(λ0),X(λ0)]}

= 2{Qa−<(λ0), [Q̂
>(λ0),X(λ0)]}. (3.16)

We used the Jacobi identity and the vanishing of the anticommutators between Qa−< and

psu(1|1)2 generators at λ0. Next substituting (3.11) and again using the vanishing of the

anticommutators between Qa−< and psu(1|1)2 generators at λ0 yields,

2{Qa−<(λ0), [Q̂
>(λ0),X(λ0)]} = 2{Qa−<(λ0), [Q̂

>(λ0), {Ŝ>(λ0), [Q̂
<(λ0), h(λ0)]}]}

= −2{Q̂>(λ0), [Ŝ
>(λ0), {Q̂<(λ0), [Q

a−<(λ0), h(λ0)]}]}
= 0. (3.17)

To reach the last line we used the first equation for h of (3.3), completing this part of the

proof.

Anticommutators between Q+ and Q−. There are 16 equations of this form. How-

ever, under su(2)R⊗ su(2)B they transform as

(2,2)⊗ (2,2) = (3,3) ⊕ (3,1) ⊕ (1,3) +⊕(1,1). (3.18)

Furthermore, a single commutator such as

{Q1+>,Q2−<} = R12 + J+− (3.19)

has components within all four of these irreducible representations. Therefore, it is suffi-

cient just to consider this equation. Taking the derivative of the left side and evaluating at

λ0 yields an identity, as shown in detail in appendix C. This proof is mildly more compli-

cated due to the nonvanishing right side of (3.19), and it requires the second equation of the

equations for h (3.3). This completes the proof at the level of algebra that the all-order pro-

posal is consistent. We now move on to consider its perturbative realization in N = 4 SYM.
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4. The spin chain realization to three loops

While we have given a consistent all-order algebraic proposal, we have not shown that the

representation for the psu(1, 1|2) sector must take this iterative form. So, we will now

use this proposal as an ansatz for the perturbative expansion of the planar gauge theory.

This ansatz enables us to construct the next-to-leading order representation. We present

this new result including the three-loop dilatation generator, after first reviewing general

aspects of the gauge theory representation, and the leading order representation. The

last parts of this section discuss homogeneous solutions to the equations for h including a

solution for the leading Bethe ansatz phase contribution, and wrapping interactions and

the possible application to the nonplanar theory.

4.1 General considerations

Here we briefly discuss key properties of the psu(1, 1|2) sector spin chain. For more detailed

discussion see [65] for the entire N = 4 SYM spin chain, and [62, 64] for specifically this

sector. We also point out requirements for h that follow from properties of the spin chain.

The model includes cyclic spin-chain states with individual sites of the chain inhabited

by a psu(1, 1|2) module. This infinite-dimensional module is spanned by

φ(n)
a or ψ

(n)
b , a = 1, 2, b =<,>, n = 0, 1, 2, . . . (4.1)

The φ are bosonic, and the ψ are fermionic. Equivalently, this module is generated by

(leading order) lowering psu(1, 1|2) generators acting repeatedly on the one-site vacuum
∣

∣φ
(0)
1

〉

. We will call the superscript index the “number of derivatives” on a site, due to the

gauge theory origin of these states as multiple covariant derivatives acting on a scalar or

fermionic field.

Next, we specify the action of the λ-independent generators. L simply counts the

number of sites of the spin chain. The uncorrected su(2) generators act homogeneously on

the spin chain; they act as if the spin chain is simply a tensor product of the modules on

each sites. Their action on individual modules is [63]

Rab
∣

∣φ(n)
c

〉

= δ{ac εb}d
∣

∣φ
(n)
d

〉

, Bab
∣

∣ψ
(n)
c

〉

= δ
{a
c ε

b}d
∣

∣ψ
(n)
d

〉

. (4.2)

Let us consider several properties of the spin chain in relation to the all-order proposal.

Charge conjugation symmetry of the gauge theory requires that Lie algebra symmetry

generators have spin-chain parity-even interactions only.10 This implies that h should be

parity even. Also, only connected Feynman diagrams contribute to gauge theory anomalous

dimensions. This translates to the requirement that Lie algebra generators act locally on

the spin chain. In turn, this means that h should act locally, on adjacent sites in the planar

limit.11 Because commutators of local generators are still local, this is sufficient to be

consistent with the gauge theory. Finally, to match the powers of λ that arise from Feynman

10Parity acts on spin chain states by reversing the order of the sites of the chain, with a minus sign for

each crossing of fermions and an overall factor of (−1)L for a length L spin chain.
11Like all of the Lie algebra generators, h acts homogeneously on the spin chain.
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diagram perturbative calculations of anomalous dimensions, the O(λn) interactions of h

must act nontrivially on at most n+ 1 adjacent sites of the spin chain.

Also, there are two ways to generalize the all order proposal: similarity transforma-

tions and gauge transformations. However, they are unphysical since they do not affect

anomalous dimensions. As a result, after giving a brief explanation here, we will rarely

consider these transformations.12 A similarity transformation can be written as

J(λ) 7→ eV (λ)J(λ)e−V (λ). (4.3)

V should be spin-chain parity even and have an expansion about λ = 0 in local interac-

tions with the same λ dependence of interaction range as given above for h, but is otherwise

arbitrary.

Gauge transformations, as appearing in the planar spin-chain description, are local

interactions that cancel when summed over the length of cyclic spin-chain states [65].

For instance, the commutators between psu(1, 1|2) and psu(1|1)2 generators only vanish

up to such gauge transformations. One could add infinitely many gauge transformation

interactions to any solution for the Lie algebra spin-chain representation. However, this

would have no effect on anomalous dimensions or on the closure of the algebra, since the

gauge theory spin-chain model includes only cyclic states.

Due to the reality of anomalous dimensions for N = 4 SYM, it is always possible to

apply a similarity transformation to obtain a Hermitian representation for the Lie algebra

generators. According to our convention, Hermitian conjugation simply exchanges initial

and final spin-chain states, maintaining the same ordering of sites.13 In the basis used in

(most of) this work, Hermitian conjugation relates generators as

(J+−)† = J+−, (Bab)† = −εacεbdB
cd, (Rab)† = −εacεbdR

cd,

(J++)† = J−−, (Qa+c)† = −εadεceQ
d−e, (Q̂a)† = εabŜ

b. (4.4)

If h = h†, it follows from the Hermiticity of psu(1|1)2 generators that X = X†. This self-

consistently guarantees that the Hermitian structure of the generators is preserved by the

all-order proposal. Below we present a solution for the Lie algebra generators to NNLO

and for h and X to NLO. This solution satisfies h = h† and X = X†, which implies that the

Hermiticity of the Lie Algebra generators (4.4) is preserved as well.14

Finally, consider the coupling constant transformation

λ 7→ λ̃(λ). (4.5)

This is clearly a symmetry of the commutation relations. However, to maintain consistency

with the λ expansion at weak coupling, the most general allowed transformation is

λ 7→ λ+ c2λ
2 + c3λ

3 + · · · (4.6)

12A notable exception is in discussed in section 4.5 and is very useful for the anomalous dimension

calculations of section 5.
13For this convention to result in a Hermitian matrix when the dilatation generator is applied to cyclic

states, certain 1/
√
n normalization factors for the states are needed. Here n is the largest integer such that

a given state is invariant under cyclic rotations by L/n sites, with L equal to the length of the state [65].
14However, the similarity transformation (mentioned in a previous footnote) that will be used in section 5

does not preserve the Hermitian structure.
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This can easily be applied to the perturbative expansion of our ansatz. However, to three

loops there will be no need to use such a transformation.

4.2 The leading order representation

The leading order representation of the λ-dependent psu(1, 1|2) generators is a tensor-

product representation. For the reader’s convenience, we repeat the one-site representation

given in [63] for the Jαβ

J++
0

∣

∣φ
(n)
a

〉

= (n+ 1)
∣

∣φ
(n+1)
a

〉

, J++
0

∣

∣ψ
(n)
a

〉

=
√

(n+ 1)(n + 2)
∣

∣ψ
(n+1)
a

〉

,

J+−
0

∣

∣φ
(n)
a

〉

= (n+ 1
2)

∣

∣φ
(n)
a

〉

, J+−
0

∣

∣ψ
(n)
a

〉

= (n+ 1)
∣

∣ψ
(n)
a

〉

,

J−−
0

∣

∣φ
(n)
a

〉

= n
∣

∣φ
(n−1)
a

〉

, J−−
0

∣

∣ψ
(n)
a

〉

=
√

n(n+ 1)
∣

∣ψ
(n−1)
a

〉

, (4.7)

and for the Qaβc

Qa+b
0

∣

∣φ
(n)
c

〉

=
√
n+ 1 δa

c ε
bd

∣

∣ψ
(n)
d

〉

, Qa+b
0

∣

∣ψ
(n)
c

〉

=
√
n+ 1 δb

cε
ad

∣

∣φ
(n+1)
d

〉

,

Qa−b
0

∣

∣φ
(n)
c

〉

=
√
n δa

c ε
bd

∣

∣ψ
(n−1)
d

〉

, Qa−b
0

∣

∣ψ
(n)
c

〉

=
√
n+ 1 δb

cε
ad

∣

∣φ
(n)
d

〉

. (4.8)

Note our convention that Jn represents the O(λn) term in the expansion of the generators,

J =
∞

∑

n=0

λn Jn. (4.9)

The leading order psu(1|1)2 generators in contrast do not act on the spin chain simply

as if it were a tensor product. However, they still act homogeneously on the spin chain.

The Qa act by replacing each individual site with 2 sites as [62, 63]

4π Q̂a
0

∣

∣φ
(n)
b

〉

=

n−1
∑

k=0

1√
k + 1

εac|ψ(k)
c φ

(n−1−k)
b 〉 −

n−1
∑

k=0

1√
n− k

εac|φ(k)
b ψ

(n−1−k)
c 〉,

4π Q̂a
0

∣

∣ψ
(n)
b

〉

=

n−1
∑

k=0

√
n− k

√

(k + 1)(n + 1)
εac|ψ(k)

c ψ
(n−1−k)
b 〉

+

n−1
∑

k=0

√
k + 1

√

(n−k)(n+1)
εac|ψ(k)

b ψ
(n−1−k)
c 〉−

n
∑

k=0

1√
n+1

δa
bε

cd|φ(k)
c φ

(n−k)
d 〉. (4.10)

The factors of 4π are due to the rescaling by
√
λ mentioned in section 2.

The Sa act in a conjugate fashion, replacing two adjacent sites with one new site, as

4π Ŝa
0

∣

∣φ
(m)
b ψ

(n)
c

〉

= − 1√
n+ 1

δa
c |φ(n+m+1)

b 〉,

4π Ŝa
0

∣

∣ψ
(m)
b φ(n)

c

〉

=
1√
m+ 1

δa
b|φ(n+m+1)

c 〉,

4π Ŝa
0

∣

∣ψ
(m)
b ψ

(n)
c

〉

=

√
n+ 1

√

(m+ 1)(m + n+ 2)
δa
b|ψ

(n+m+1)
c 〉

+

√
m+ 1

√

(n+ 1)(m+ n+ 2)
δa
c |ψ(n+m+1)

b 〉,
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4π Ŝa
0

∣

∣φ
(m)
b φ(n)

c

〉

=
1√

n+m+ 1
εbcε

ad|ψ(n+m)
d 〉. (4.11)

We will not give the explicit leading order expression for H here; it can be found in [63].

Finally, the leading order expression for h was obtained in [62]

h0

∣

∣φ(n)
a

〉

=
1

2
S(n)

∣

∣φ(n)
a

〉

, h0

∣

∣ψ
(n)
a

〉

=
1

2
S(n+ 1)

∣

∣ψ
(n)
a

〉

, (4.12)

where S(n) is the n-th (ordinary) Harmonic number. There and in further analysis in [64]

it was shown that h0 satisfies the two requirements of the ansatz, (3.3). Substitution

into (3.2) yields the leading order expression for X, which is sufficient to give the NLO

psu(1|1)2 supercharges and the two-loop dilatation generator, as originally found in [62].

We will review this result in section 4.5.

4.3 Next-to-leading order representation

Assuming the algebraic ansatz, the only new ingredient required at next-to-leading order

is the O(λ1) term of the expansion for h. To solve the conditions (3.3) at this order, h1

must act on two adjacent sites. This makes obtaining the explicit form of h1 much more

challenging. We will not show the lengthy intermediate steps involved in obtaining the

solution. Instead we will explain the method used and describe the solution, which is given

explicitly in appendix D.

R and B symmetry and Hermiticity imply that it is sufficient to obtain a solution for

h to, for example,

{Ŝ<, [Q1+<, h]} = 0,

{Q1+<, [Q2−>, h]} =
1

2
R12 − 1

2
B<> − 1

4
L + λX<>. (4.13)

The O(λ) term of these equations is

{Ŝ<
0 , [Q

1+<
0 , h1]}+ {Ŝ<

0 , [Q
1+<
1 , h0]}+ {Ŝ<

1 , [Q
1+<
0 , h0]} = 0,

{Q1+<
0 , [Q2−>

0 , h1]}+ {Q1+<
0 , [Q2−>

1 , h0]}+ {Q1+<
1 , [Q2−>

0 , h0]} = X<>
0 . (4.14)

Note that according to the ansatz, Q1+<
1 , Ŝ<

1 and Q2−>
1 are known, and are simply commu-

tators of leading order generators with X0. Furthermore, h1 appears linearly through only

one term in each equation. Rather than solving for h1 directly, it is much simpler to first

obtain a solution for [Q1+<
0 , h1]. We do this by writing [Q1+<

0 , h1] in terms of 12 unknown

component functions of three arguments, which parameterize the possible parity-even in-

teractions on two sites.15 The arguments are the total number of derivatives initially, the

number of derivatives on the first site initially, and the number of derivatives on the first site

finally.16 Substituting into (4.14) and expanding in terms of components yields a system

of 46 equations for these 12 functions.17 One subtlety is that the first equation of (4.14)

15The possible interactions are limited since they must have the right R and B charges and be consistent

with Hermiticity and with the vanishing commutator between h and J+−

0 .
16There are other possibilities for the arguments, of course.
17There are a few linear dependences between the equations, which are useful for consistency checks.

– 14 –



J
H
E
P
0
7
(
2
0
0
8
)
1
1
4

is only satisfied up to gauge transformations, but this is straightforward to account for

with two functions parameterizing these gauge transformations. Furthermore, we obtain 7

additional equations from the following identities,

[R11, [Q1+<
0 , h1]] = 0, [B≪, [Q1+<

0 , h1]] = 0, {Q1+<
0 , [Q1+<

0 , h1]} = 0. (4.15)

While the 12 component functions enter these (46 + 7) equations linearly, these are

very nontrivial equations to solve. The component functions are coupled nontrivially, and

the component functions appear with different arguments and with factors depending on

their arguments. It is straightforward to solve for 8 of the component functions in terms

of the other 4 and (known) commutators that do not involve h1. To solve for the final

few functions it is most efficient to expand them in terms of a basis of harmonic number

functions, and then find the coefficients numerically. The only functions that are needed

(allowing for products of functions), are the ordinary harmonic number function

S(j) =

j
∑

i=1

1

i
(4.16)

and the two positive-index degree-two generalized harmonic functions

S2(j) =

j
∑

i=1

1

i2
, S1,1(j) =

j
∑

i=1

S(i)

i
. (4.17)

The set of arguments that enter these harmonic functions must include the total number of

derivatives, initially or finally, the number of derivatives on any site initially or finally, or

the number of derivatives shifted between the two sites (these arguments may also appear

with ±1). Four of the component functions are given explicitly in appendix D. While we

do not prove that we have found a solution for [Q1+<
0 , h1], we have checked up to 20 total

derivatives that all of the equations are satisfied.18 Since we fixed the (integer) coefficients

for functions entering the component functions only using equations for up to at most 10

derivatives, this is overwhelming evidence.

Now a similar process can be applied directly to h1. First h1 is written in terms of 7

component functions. Expanding the commutator with Q1+<
0 yields 12 equations, and it is

straightforward to solve for 4 of the component functions in terms of the other 3. As before,

we expand these final few component functions in terms of a basis of functions and solve for

the coefficients numerically. Some further generalizations of the harmonic sums are required

for this solution, as explained in appendix D, where the solution is presented. This method

works, as in for example [66, 48], because the component functions have definite harmonic

degree and integer coefficients. The extra challenge here is that these functions have three

arguments rather than just one. On the other hand, with this proposal for the solution it

is straightforward to verify analytically that all of the equations are satisfied. We have not

done that simply because it is much more efficient to gather convincing numerical evidence.

18Note that the leading order spin-chain symmetry generators change the total number of derivatives by

at most 1, so it is straightforward to truncate at a given maximum number of derivatives.
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The proposal for h1 satisfies the equations for interactions involving up to 20 derivatives,

and again we only needed up to 10 derivatives to find the coefficients. Therefore, it is

safe to conclude that expressions given for h1 in appendix D satisfies the equations (3.3)

required by the algebraic ansatz at NLO.

As explained in section 5, further extensive spectral tests lead us to conclude, with

almost certainty, that this is the gauge theory solution for h1, and therefore that the

algebraic ansatz is general enough to describe the psu(1, 1|2) sector of N = 4 SYM at least

to three loops. It is also intriguing that the (probable) gauge theory solution for h1 has

harmonic degree three and integer coefficients. Perhaps there is further iterative structure

that could greatly simplify the perturbative construction of h.

4.4 Homogeneous solutions

The solution for h1 is actually not uniquely specified by the NLO constraints from (3.3).

There are two types of homogeneous solutions that can be added. Importantly, based upon

the analysis of [67], it must be that all but one of these solutions for h1 breaks integrability,

so (assuming integrability) they cannot contribute to the dilatation generator. We consider

this further at the end of this section.

We first discuss the simpler type of homogeneous solution. Note that h1 only appears

in (4.14) inside commutators with leading order psu(1, 1|2) generators. Therefore, any

function of the psu(1, 1|2) quadratic Casimir, acting on two adjacent sites for consistency

with the perturbative structure, is a homogeneous solution. The quadratic Casimir J2 is

given explicitly as

J2 = εcbεadR
abRcd − εγβεαδJ

αβJγδ − εadεβγεceQ
aβcQdγe, (4.18)

and has eigenvalues j(j + 1) for j = 0, 1, 2, . . .; j is the psu(1, 1|2) “spin” It is possible

to write explicitly the interactions for a generator with eigenvalues cj for spin-j two-site

states, as explained in appendix E. Including this contribution to h1 with arbitrary cj gives

a countably infinite set of solutions (at this order). To eliminate this freedom we apply

the maximal transcendentality principle [68], which in this case implies that it should

be possible to write h1 completely in terms of generalized harmonic sums of degree three.

Furthermore, assuming that no generalized harmonic sums with −1 indices appear [68, 48],

there are only 7 coefficients to fix, which we do by substituting h1 into the expression for the

three-loop dilatation generator and matching the resulting spectrum to known spectral data

for twist-two states. In fact, the solution that works only includes generalized harmonic

functions with positive indices and with integer coefficients, as is the case for expressions

for twist-three anomalous dimensions (to four loops) obtained in [66, 48].

As mentioned above, there is a second type of homogeneous solution. Solutions δh1 of

this type have nonvanishing commutators with psu(1, 1|2) supercharges (including Q1+<
0 ),

but they still satisfy, for example,

{Ŝ<
0 , [Q

1+<
0 , δh1]} = 0,

{Q1+<
0 , [Q2−>

0 , δh1]} = 0. (4.19)
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First, consider the following ansatz for δh1,

δh1 =
∑

i,j

cij
(

Pi h0Pj

)

1,2
(4.20)

Here Pj is the projector for two-site states with psu(1, 1|2) spin j. Explicitly, it is given

by the solution in appendix E with coefficients ci = δij . The final 1, 2 subscript in (4.20)

denotes that all three generators in this product act on the same two adjacent sites, with h0

acting through the sum of its one-site interactions. As usual, this two-site structure should

be summed homogeneously over the length of the spin chain. Note that the projectors

satisfy PiPj = δijPi. From the algebra relations for h0 and the vanishing commutators be-

tween the Pi and the leading order psu(1, 1|2) generators (including B), it then follows that

{Q1+<
0 , [Q2−>

0 , δh1]} =
∑

i,j

cijδij
(

(leading order generators)Pi

)

1,2
(4.21)

Therefore, the second equation of (4.19) is satisfied provided cii = 0 for all i. Also, Her-

miticity requires that cij = cji. Solving the first equation of (4.19) analytically is more

difficult because of the length-changing interactions of Ŝ<
0 . However, numerically we find

that the unique solution (up to normalization) for the cij is given by cij = |S(i)−S(j)|. We

have checked the uniqueness of this solution for the cij up to 10 excitations, and confirmed

that (4.19) is satisfied up to 20 excitations.19

This homogeneous solution for h apparently is required for the homogeneous struc-

ture that first appears in the gauge theory dilatation generator at four loops, preserving

integrability. This homogeneous structure corresponds to the phase contribution to the

Bethe equations [6], with the coefficient β
(n)
2,3 at n + 1 loops, in the notation of [67]. As

is well-known and as mentioned in the introduction, the phase is crucial for obtaining the

correct interpolation between gauge and string theory asymptotic Bethe equations [13].

As explained in [67], it is possible to construct this homogeneous structure as soon as the

Hamiltonian acts on four adjacent sites, i.e. starting at three loops. However, in gauge

theory its appearance is delayed by one loop because of the limited possible interactions

that can be built from Feynman diagrams at three loops, as will be discussed further below.

Explicitly, the proposal for δh is

(4π)2(n−1)

n
(δhn−1)1,2 = β

(n)
2,3





∞
∑

i=1

S2(i)Pi +
∞
∑

i,j=0

|S(i)− S(j)|Pi h0Pj





1,2

(4.22)

The factors of 4π are simply for conversion between λ and g, while the factor of n compen-

sates for a factor of 1/n from integrating λn−1Xn−1 according to (3.1). Also, observe that

the first term ∼ S2(i)Pi clearly satisfies the algebra constraints since it is a homogeneous

solution of the first type. It is intriguing that the first term would be proportional to the

one-loop dilatation generator if S2(i) were replaced with S(i). In section 5.4 we describe

19Excitations refers to the number of magnons above the half-BPS vacuum of all φ
(0)
1 . Equivalently, a

ψ(j) contributes j + 1 excitations, a φ
(k)
2 , k + 1 excitations, and a φ

(m)
1 , m excitations.
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thorough checks that confirm this homogeneous solution for h matches the Bethe ansatz

predictions for the β2,3 contributions. Note, that this solution is only the leading order so-

lution for the β2,3 contributions, and requires corrections at higher orders in λ. According

to our conjecture that the algebraic ansatz does apply to the gauge theory at all orders,

these higher-order corrections can be included through corrections to h.

In fact, numerical analysis also suggests that there are infinitely more homogeneous

solutions of the second type for h1. In particular, truncating at j excitations, we find

[(j + 1)/2] solutions20 to (4.19), including the single solution given explicitly above. The

natural way to generalize the ansatz (4.20) for such solutions is to replace h0 there with a

new (two-site) generator X satisfying

{Q1+<
0 , [Q2−>

0 ,X]} =
∑

i

diPi. (4.23)

The simplest such X is X0, which corresponds to di ∝ S(i). However, further analysis of

these apparent additional solutions is beyond the scope of this work.

As noted above, the three-loop dilatation generator cannot include any of the homoge-

neous solutions included here, again assuming integrability. The simplest possibility is that

these solutions are an artifact of solving for h perturbatively, and that closure of the algebra

for h at higher orders would eliminate them. Initial numerical analysis indicates otherwise;

at two excitations, both physically relevant homogeneous solutions21 are consistent with

the algebraic ansatz at NNLO. However, there is a conceptually simple way to eliminate

these solutions, which works the same way as in the compact su(2|3) sector [59]. At l loops,

interactions can only be included if they involve at most l permutations of adjacent flavors

of scalars. Otherwise, there is no l-loop Feynman diagram that can be drawn for such an

interaction. We have checked at two excitations that this property eliminates both physical

homogeneous solutions at three loops (including the phase solution, as mentioned above).

We expect that this property also eliminates all of the remaining homogeneous solutions

that appear for more excitations. Checking this would involve straightforward but lengthy

calculations of coefficients for these types of interactions, which we leave for the future.

However, even assuming that all homogeneous solutions are structurally eliminated

at three loops, they could still appear at four loops. Therefore, it seems likely that the

basic Feynman diagram properties used in this work and extended psu(1, 1|2) × psu(1|1)2
symmetry are sufficient to guarantee psu(1, 1|2) sector integrability through three loops,

but not beyond.

4.5 The dilatation generator to three loops

With the solution for h1, we now have all the necessary ingredients to expand the dilata-

tion generator to three loops. By definition and by the psu(1|1)2 algebra, the complete

psu(1, 1|2) sector dilatation generator is

D = D0 + λH, H = 2{Q̂<, Ŝ>}. (4.24)

20Brackets denote greatest integer less than or equal to (j + 1)/2.
21Naively there should be three homogeneous solutions of the first type at two excitations, but two of

these are gauge equivalent to zero.
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Then at O(λ),

D1 = λH0 = 2λ {Q̂<
0 , Ŝ

>
0 }. (4.25)

Next, consider the derivative with respect to λ (all generators are functions of λ, which is

suppressed),

∂

∂λ
H = 2{Ŝ>, [Q̂<,X]} − 2{Q̂<, [Ŝ>,X]}

= −2{Ŝ>, [Q̂<, {Ŝ<, [Q̂>, h]}]} − 2{Q̂<, [Ŝ>, {Q̂>, [Ŝ<, h]}]}
= 2{Ŝ>, [Ŝ<, {Q̂<, [Q̂>, h]}]} + 2{Q̂<, [Q̂>, {Ŝ>, [Ŝ<, h]}]}, (4.26)

where we used (3.13) for expanding the two terms on the first line, and vanishing anticom-

mutators of the psu(1|1)2 algebra to reach the ordering of the supercharges on the last line.

According to the algebraic ansatz, this expression for the derivative holds for general

λ. However, to make contact with the perturbative gauge theory representation, expand

this expression at λ = 0. For instance,

{Ŝ>, [Ŝ<, {Q̂<, [Q̂>, h]}]} =

∞
∑

n=0

λn {Ŝ>, [Ŝ<, {Q̂<, [Q̂>, h]}]}n (4.27)

Then integrate with respect to λ to obtain the perturbative series for δD = λH

δD(λ) = 2λ {Q̂<
0 , Ŝ

>
0 }+ 2

∞
∑

n=0

λn+2

n+ 1
{Ŝ>, [Ŝ<, {Q̂<, [Q̂>, h]}]}n

+2
∞
∑

n=0

λn+2

n+ 1
{Q̂<, [Q̂>, {Ŝ>, [Ŝ<, h]}]}n (4.28)

It follows that

δD2 = 2{Ŝ>, [Ŝ<, {Q̂<, [Q̂>, h]}]}0 + 2{Q̂<, [Q̂>, {Ŝ>, [Ŝ<, h]}]}0. (4.29)

Through two loops, the dilatation generator only depends on leading order generators

(including h0). This expression for δD2 matches the result given in section 4.3 of [62], up

to changes of notation and convention, which are explained in appendix A.

The three-loop contribution does depend also on next-to-leading contributions to gen-

erators,

δD3 = {Ŝ>, [Ŝ<, {Q̂<, [Q̂>, h]}]}1 + {Q̂<, [Q̂>, {Ŝ>, [Ŝ<, h]}]}1. (4.30)

When expanded, this three-loop contribution is a sum of 10 terms. Each of these terms is

a nested commutator of leading order generators and one next-to-leading order correction.

For instance, the first term of (4.30) expands as

{Ŝ>
1 , [Ŝ

<
0 , {Q̂<

0 , [Q̂
>
0 , h0]}]}+ {Ŝ>

0 , [Ŝ
<
1 , {Q̂<

0 , [Q̂
>
0 , h0]}]} + {Ŝ>

0 , [Ŝ
<
0 , {Q̂<

1 , [Q̂
>
0 , h0]}]}

+{Ŝ>
0 , [Ŝ

<
0 , {Q̂<

0 , [Q̂
>
1 , h0]}]} + {Ŝ>

0 , [Ŝ
<
0 , {Q̂<

0 , [Q̂
>
0 , h1]}]}. (4.31)

For these next-to-leading order generators, recall (3.11) and (3.13),

Q̂<
1 = −[Q̂<

0 , {Ŝ<
0 , [Q̂

>
0 , h0]}], Q̂>

1 = [Q̂>
0 , {Ŝ>

0 , [Q̂
<
0 , h0]}],

Ŝ<
1 = [Ŝ<

0 , {Q̂<
0 , [Ŝ

>
0 , h0]}], Ŝ>

1 = −[Ŝ>
0 , {Q̂>

0 , [Ŝ
<
0 , h0]}]. (4.32)
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Upon substitution into (4.30) (expanded as in (4.31)), the proposed three-loop dilatation

generator is expressed completely in terms of leading order generators and h1.

For direct computations of anomalous dimensions, however, it is convenient to apply

a similarity transformation. Using U(X, λ), which appears in the (path-)integrated form

of the algebraic ansatz (3.4), it is possible to transform away all of the corrections to

the raising generators. This is very useful because it implies that dilatation generator

(including its perturbative corrections) commutes with leading order raising generators.

Then the dilatation generators mixes states annihilated by a given leading order raising

generator only with other states annihilated by the same leading order raising generator.

For the perturbative expansion of δD of the transformed solution, note that the dif-

ferential version of this transformed solution is

∂

∂λ
J+(λ) = 2[J+(λ),X(λ)],

∂

∂λ
J−(λ) = 0. (4.33)

X is defined as above in terms of h, and formally h must satisfy the same equations as

previously. However, importantly this similarity transformation requires a different solution

for h. For this work simply note that h0 is unaffected and

h1 7→ h1 + [h0,X0]. (4.34)

Using (4.33) and repeating steps done earlier in this subsection, we find that in this non-

Hermitian basis

δD2 = 4{Ŝ>, [Ŝ<, {Q̂<, [Q̂>, h]}]}0,
δD3 = 2{Ŝ>, [Ŝ<, {Q̂<, [Q̂>, h]}]}1, (4.35)

where again (4.34) must be used for h1 appearing in the expression for δD3. Of course,

although the matrix elements of these new expressions for the dilatation generator will be

different than for the Hermitian expressions presented earlier, the eigenvalues (anomalous

dimensions) will be unchanged.

4.6 Wrapping interactions and a possible nonplanar lift

Wrapping interactions, initially discussed in [59, 69, 5, 70], correspond to nonplanar inter-

actions that become planar for short states by wrapping around the trace. At three loops,

the dilatation generator has wrapping interactions when acting on states of length two or

three. In the next section, we will present very strong evidence that the algebraic ansatz

combined with the proposal for h1 yields the correct three-loop anomalous dimensions,

even for short states. We conclude that this solution correctly incorporates wrapping. In

fact, there is no wrapping ambiguity for this proposal because the three-loop dilatation

generator is built in terms of leading order supercharges, h0, and h1. There is no wrapping

problem for leading order supercharges (and h0) since their interactions involve only one

initial site, or only one final site. Finally, it is sufficient that h1 is defined through its actions
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on two sites because the length-decreasing Ŝ annihilate two-site states (this is guaranteed

by spin-chain parity).22

For this paragraph, let us assume the iterative ansatz is general enough to give the

four-loop dilatation generator. Now h2 would appear, and it has three-site interactions.

Therefore h2 has wrapping interactions on two-site states. This is precisely consistent with

the fact that starting at four loops wrapping interactions can invalidate the asymptotic

Bethe ansatz for two-site states23 [59, 8], as in fact happens [48]. Assume that ζ(5) ap-

pears only within wrapping interactions, as suggested by recent calculations [71, 72].24

This would correspond to ζ(5) only appearing in (the homogeneous part of) the wrapping

interactions of h2. Of course, it would still remain a challenge to fix coefficients for the

infinitely many homogeneous two-site solutions for h, described in section 4.4.

Also, it is possible that the algebraic ansatz is not general enough to describe the gauge

theory wrapping interactions. An intermediate possibility is that a more general algebraic

ansatz, like the ones presented in section 6, is required for wrapping interactions.

In [62], it was argued that the two-loop solution for the dilatation generator has a

natural nonplanar generalization. The leading order psu(1|1)2 supercharges have a unique

lift to the nonplanar theory, as explained there. Since the one-site generator h0 certainly

also has a unique lift, one can simply substitute the nonplanar generalizations for the

supercharges and h0 into the algebraic expression for the two-loop dilatation generator to

obtain a nonplanar generalization. This nonplanar expression still satisfies all the symmetry

constraints because the proof only depended on algebraic properties. Given that wrapping

effects are properly taken into account, it is reasonable to conjecture that this is the two-

loop nonplanar dilatation generator.

At three loops the new ingredient for the dilatation generator is h1. Since this acts on

two sites, it is nontrivial to obtain the three-loop nonplanar dilatation generator, even if

one assumes that the iterative ansatz still applies. In fact, if there is a nonplanar solution

consistent with the algebraic ansatz, it must be unique. Since this argument is similar to

Beisert’s argument for the one-loop dilatation generator [58], we first review that.

The nonplanar one-loop dilatation generator can be written in terms of one normal-

ordered nonplanar structure,

λ

N
CAB
CD : Tr[WA, ŴC ][WB, ŴD] : . (4.36)

Here theWA represent “fields,” which are covariant derivatives of scalars or fermions in the

psu(1, 1|2) sector, taking values in the Lie algebra of the gauge group, and ŴA represents

variations with respect to these “fields”. Beisert showed using gauge invariance and a

22Usually we do not consider one-site states which vanish for SU(N) gauge theories, and for any gauge

group are protected descendants of the one-site vacuum TrZ. Even if we choose to include such states, it is

not a problem. Both Ŝ and Q̂ annihilate one-site states, so h can be defined to be zero on one-site states

(it actually could take arbitrary finite values without having an effect), and the solution properly gives zero

anomalous dimension for these one-site states as well.
23Due to the length-increasing action of the Q̂, any (non-BPS) two-site states is in the same supermultiplet

as a four-site state.
24There is currently a discrepancy between these two results. Also, see [73].
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Jacobi identity that the three possible types of field theory interactions that could arise

at one loop could all be combined into this one type of interaction. The coefficients were

fixed by considering the planar limit, and from these coefficients one immediately obtains

the complete nonplanar expression for D1 = λH0.

Similarly, it must be possible to write all interactions of the nonplanar h1 (if the

algebraic ansatz still applies) as

(h1)nonplanar =
λ

N
hAB
CD : Tr[WA, ŴC ][WB, ŴD] :, (4.37)

because the interactions come with only two powers of gYM, like the one-loop dilatation

generator. As before, the planar limit uniquely fixes the coefficients hAB
CD .

The same type of argument applies to the second equation for h in (3.3), at next-

to-leading order. This equation for h1 consists of three terms that do not include h1.

These terms are commutators of one Q̂0, one Ŝ0, and one-site generators. These one-site

generators take the form

CA
B TrWAŴB. (4.38)

It follows that they do not change the gauge group structure; they simply replace a single

field with another field with the same gauge group indices. Furthermore, the anticommu-

tators of (Hermitian conjugate pairs of) Q̂ and Ŝ generate precisely the interactions of the

one-loop dilatation generator. Therefore, the terms of the second equation of (3.3) not in-

cluding h1 can be written using new coefficients C̃AB
CD multiplying the same nonplanar struc-

ture that appears in (4.36). Because h1 also appears only inside commutators of one-site

generators, this equation for h is solved by (4.37) with coefficients fixed by the planar limit.

Importantly, it remains to be shown that this “solution” for h1 (4.37) also satisfies the

first requirement of (3.3). This requires further investigation because h1 appears inside

a commutator with a length-changing generator. If the nonplanar generalization for h1

satisfies this equation as well, our ansatz will have been lifted to a solution of all symmetry

constraints at three loops for the psu(1, 1|2) sector. Again, since wrapping effects are

properly incorporated, this would be a strong candidate for the nonplanar generalization.

On the other hand, it is certainly possible that this ansatz cannot apply starting at three

(or two) loops to the nonplanar theory. Testing this almost certainly requires rigorous two-

and three-loop nonplanar calculations of anomalous dimensions.

5. Verification of the three-loop proposal

In this section we test the proposal first by considering Hamiltonian interactions (within the

su(2) subsector), then by computing the two-magnon S-matrix, and finally through direct

diagonalization for multiple-magnon states. In the final part of this section we repeat these

checks for the phase solution. For simplifying comparisons with previous results we use the

coupling constant g, which is related to the ’t Hooft coupling as25

g2 =
λ

16π2
. (5.1)

25Previous works have sometimes used different conventions, most often an 8 rather than a 16 in the

denominator.
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5.1 su(2) subsector interactions

Restricting to psu(1, 1|2) sector states without fermions or derivatives yields the su(2)

subsector. Now the single-site module is spanned by φa, a = 1, 2. The three-loop su(2)

subsector Hamiltonian was first proposed in [3] based on the assumptions of BMN scaling

and integrability. That proposal was later proved correct using algebraic and diagrammatic

constraints for the larger su(2|3) sector [59] and a rigorous field theory computation of the

three-loop anomalous dimension of the Konishi operator [74]. Note that BMN scaling is

not present beyond three loops. Using the permutation notation introduced in [3],

{p1, p2, . . .} =

L
∑

p=1

Pp+p1,p+p1+1Pp+p2,p+p2+1 . . . (5.2)

where Pi,i+1 permutes adjacent sites of the spin chain, the explicit su(2) sector Hamiltonian

to three loops is

δD2 = 2{} − 2{1},
δD4 = −8{}+ 12{1} − 2({1, 2} + {2, 1}),
δD6 = 60{} − 104{1} + 4{1, 3} + 24({1, 2} + {2, 1}) − 4({1, 2, 3} + {3, 2, 1}). (5.3)

Note that the subscripts now refer to powers of g =
√
λ/4π. Expanding the expres-

sions (4.29) and (4.30) in terms of interactions (using Mathematica), restricting to inter-

actions contained within the su(2) subsector, and then eliminating interactions that act

as chain derivatives on cyclic (or periodic) chains, we find perfect agreement with (5.3).

Note that we used the Hermitian form for the proposed psu(1, 1|2) dilatation generator,

since (5.3) is presented in a Hermitian basis.

While this is a nice and relatively simple check of our proposal, it only checks interac-

tions involving at most two magnons. The reason is that the three-loop dilatation generator

only acts on at most 4 sites, and by su(2) symmetry any interaction (that affects the spec-

trum) of n magnons has the same coefficient as the interaction with all su(2) spins flipped,

which is a (4 − n)-magnon interaction. In principle, one could repeat such a Hamiltonian

comparison within larger subsectors, but the only other subsector with known three-loop

dilatation generator is the compact su(1|2) subsector (and its su(1|1) subsector), which is

the intersection of the psu(1, 1|2) sector and the su(2|3) sector. However, the three-loop

dilatation generator for the su(2|3) sector [59] has not been given explicitly. In any case,

such a check will be made almost redundant by the other tests discussed below.

5.2 S-matrix checks

In this subsection, we will consider only infinite-length states. First, consider the su(1|1)
subsector, with module spanned by φ

(0)
1 and ψ

(0)
< . Starting from the ferromagnetic vacuum

of a chain of φ
(0)
1 , the one-magnon states are

∣

∣Ψp

〉

=

∞
∑

x=1

eipx
∣

∣x
〉

, (5.4)
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where
∣

∣x
〉

refers to the state with a ψ
(0)
< on the x-th site and all other sites still occupied

by φ
(0)
1 . Applying the one-loop, two-loop (4.29) and three-loop (4.30) dilatation generator

to this state yields

δD
∣

∣Ψp

〉

= (8g2 sin2(
p

2
)− 32g4 sin4(

p

2
) + 256g6 sin6(

p

2
) +O(g8))

∣

∣Ψp

〉

, (5.5)

which matches the perturbative expansion of the well-known expression for one-magnon

dispersion relation

E(p) =

√

1 + 16g2 sin2(
p

2
)− 1. (5.6)

By psu(1, 1|2) symmetry, it follows that the proposal yields the correct dispersion relation

for all flavors of magnons within the psu(1, 1|2) sector. For later use, note that this and

closure of the Lie algebra imply that the solution gives the correct action of the Lie algebra

generators on asymptotic one-magnon states, at NNLO.

Next, consider the spectral problem for two-magnon states. Again using the proposal

for the dilatation generator restricted to the su(1|1) sector, one finds eigenstates that are

products of one-particle states up to a S-matrix factor and other local terms (to three loops)

∣

∣Ψp1,p2

〉

=
∑

1≤x1<x2≤∞

(

eip1x1+ip2x2 + eip1x2+ip2x1

(

S(p2, p1) + c(1)(p1, p2)δx2(x1+1)

+c(2)(p1, p2)δx2(x1+2)

)

)

∣

∣x1x2

〉

. (5.7)

∣

∣x1x2

〉

has ψ
(0)
< on sites xi, and φ

(0)
1 on all other sites. Since the dilatation generator to

three loops is short-ranged, such a state must and does have eigenvalue equal to the leading

three terms of E(p1) + E(p2). Solving for the coefficients S and c(i) in the wavefunction,

we find agreement with the known 2-particle S-matrix for this sector, first obtained to

three-loops in [7], using the result of [59],

S(p1, p2) = −1− 2ig2(sin(p1)− sin(p1 − p2)− sin(p2))

+4ig4 sin
(p1

2

)

sin
(p2

2

)

(

sin

(

p1 − 3p2

2

)

− 7 sin

(

p1 − p2

2

)

+ sin

(

3
p1 − p2

2

)

+sin

(

3p1−p2

2

)

−8isin
(p1

2

)

sin
(p2

2

)

sin2

(

p1−p2

2

))

.

+O(g6). (5.8)

The other coefficients expand as

c(1)(p1, p2)=g
2c

(1)
0 (p1, p2)+g

4c
(1)
2 (p1, p2)+O(g6), c(2)(p1, p2)=g

4c
(2)
0 (p1, p2)+O(g6). (5.9)

However, these coefficients are basis dependent and not relevant to the Bethe ansatz, so

we do not write them here.

As explained for instance in [8], the fundamental magnons for the psu(1, 1|2) sector can

be φ
(0)
2 , ψ

(0)
< , and ψ

(0)
> (this corresponds to a choice of the simple roots of the Lie algebra).

– 24 –



J
H
E
P
0
7
(
2
0
0
8
)
1
1
4

All states are then built by adding these fundamental excitations to the vacuum state of

φ
(0)
1 . Using manifest B symmetry and parity, there are only 5 independent components,

S22
22 , S

2<
2< , S

2<
<2 , S

[<>]
[<>]

, S≪
≪ . (5.10)

Since we already checked that the proposal gives the correct Hamiltonian in the su(2) sector,

it must yield the correct S-matrix element S22
22 as well as the correct element S≪

≪ , which

we just computed. We have also directly checked that the correct three-loop sl(2) sector

S-matrix follows from the proposed solution. Given these multiple checks, and the spectral

results below which are consistent with the known S-matrix and factorized scattering, there

should be no doubt that the solution generates the correct two-particle S-matrix. Therefore

we do not explicitly check the remaining S-matrix components.26

5.3 Spectral tests

While the above results constitute a thorough test for two-magnon states, we have not

yet tested the proposal on states involving more than two magnons. We do so in this

subsection by direct evaluation of eigenvalues of the proposed dilatation generator. First

we explain some key aspects of these calculations. As discussed at the end of section 4.5,

for this purpose it is convenient to use the expressions (4.35), for which states annihilated

by a given leading-order raising generator only mix with other states annihilated by that

leading-order raising generator. Due to the algebra relations of section 2.2, the dilatation

generator also only mixes states that have the same R and B charges, length, and classical

dimension. Finally, the dilatation generator is spin-chain parity even, so it only mixes

states of the same parity. Consequently, since we only calculate eigenvalues for states with

relatively small charges, typically we encounter mixing between two or fewer states (at

most four), so that mixing is not a significant problem.

However, computation time for acting with the dilatation generator on even a single

state increases rapidly with length and with the number of magnons, especially derivatives.

To counter this problem there is another useful shortcut. First let us consider the case

with no mixing. An energy eigenstate
∣

∣E
〉

is given as a a linear combination of ‘’position

(eigen)states,” which have specific elements of the psu(1, 1|2) module on each site (
∣

∣x
〉

or
∣

∣x1x2

〉

encountered in the previous subsection are simple examples),

∣

∣E
〉

= ci
∣

∣xi

〉

(5.11)

The coefficients ci are found using a leading-order calculation. Since by assumption there

is no mixing with
∣

∣E
〉

,

δD
∣

∣E
〉

= δD
∣

∣E
〉

= δDci
∣

∣xi

〉

. (5.12)

It follows, that it is enough to compute the coefficient of a single position state in δD
∣

∣E
〉

.

In practice, that does not save much computation time. Instead, by using the Hermi-

tian conjugate to δD (recall that we are using a non-Hermitian basis) we can obtain the

26These components are constrained by the fact that the supercharges act properly on asymptotic one-

particle states, and this asymptotic action must commute with the S-matrix. This should fix much if not

all of the remaining freedom.
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eigenvalue by acting on just a single position state27

〈E|δD†
∣

∣x1

〉

= δDc1. (5.13)

This is enough to infer the change in eigenvalue δD. This usually results in significant

time saving because of fewer terms generated by the action of the (conjugate) dilatation

generator. It is straightforward to generalize this procedure for mixing. If there is mix-

ing between n states, it is necessary to compute the action of δD† on n position states,

which again typically yields significant time saving over acting directly on the leading order

energy eigenstates.

We have checked the spectrum for many two magnon states, with complete agreement

with previous results. This is a redundant check, however, due to the S-matrix results of

the previous subsection. Next, as mentioned in section 4.4, we use twist-two states to fix

the first type of homogeneous freedom for h1. The twist-two spectrum is given in terms of

generalized harmonic sums, which are defined as

Sa(n) =

n
∑

i=1

(sgn(a))i

i|a|
, Sa1,a2,...am(n) =

n
∑

i=1

(sgn(a1))
i Sa2,...am(i)

i|a1|
. (5.14)

The twist-two states’ three-loop anomalous dimensions are [75]

D(j) = j + 2 + 8 g2S1 − 16 g4
(

S3 + S−3 − 2S−2,1 + 2S1(S2 + S−2)
)

(5.15)

−64 g6

(

2S−3S2 − S5 − 2S−2S3 − 3S−5 + 24S−2,1,1,1

+6(S−4,1 + S−3,2 + S−2,3)− 12(S−3,1,1 + S−2,1,2 + S−2,2,1)

−(S2 + 2S2
1)(3S−3 + S3 − 2S−2,1)− S1

(

8S−4 + (S−2)
2

+4S2S−2+2(S2)
2+3S4−12S−3,1−10S−2,2+16S−2,1,1

)

)

+O(g8),

where all harmonic sums are evaluated at (even) j, the psu(1, 1|2) spin. It should be noted

that these anomalous dimensions follow from a rigorous QCD calculation [76] combined

with the assumption of maximal transcendentality (at three loops). Since a rigorous cal-

culation confirms the j = 2 value [74], and the Bethe ansatz gives the same values for

j = 2, 4, 6, 8, . . . [7], (5.15) is almost certainly correct. We have checked that the solution

for h1 given in appendix D yields these same three-loop anomalous dimensions, for (even)

j ≤ 14, which is sufficient to fix the first type of homogeneous freedom, again assuming

maximal transcendentality.

For further consistency tests, we first use more states within the sl(2) sector. Given that

the proposal yields the correct two-particle S-matrix, such tests can be viewed equivalently

as tests of consistency with factorized scattering, with integrability, or with the Bethe

ansatz. For every state tested, see table 1, the eigenvalue of the proposed three-loop

dilatation generator is in complete agreement with the prediction of the Bethe ansatz.

Finally, we perform similar tests for states including fermions, within the su(1|1) subsector

27The scalar product is one for normalized states that are identical (up to cyclic permutation), and it is

zero otherwise.
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(D0;R,L,B)
(

D2,D4,D6

)P
δDphase

(5; 3
2 , 3, 0) (8,−24, 136)− −32−

(6; 3
2 , 3, 0) (15,−225

4 , 3195
8 )± −135

4

±

(7; 3
2 , 3, 0) (12,−39, 957

4 )− −54−

(7; 2, 4, 0) (12,−42, 288)± −36±

(8; 3
2 , 3, 0) (35

2 ,−18865
288 , 1068515

2304 )± −11515
288

±

(8; 2, 4, 0)

(8.76554,−21.001, 100.672)+

(16.7185,−64.272, 475.048)+

(23.1826,−92.4124, 668.959)+

(46
3 ,−1331

27 , 76973
243 )±

−23.233+

−31.9153+

−91.3516+

−257
27

±

(8; 5
2 , 5, 0)

(9.45862,−28.0586, 169.594)±

(15.5414,−57.6916, 423.155)±

−22.4301±

−15.3199±

(9; 3
2 , 3, 0)

(44
3 ,−443

9 , 303115
972 )−

(227
10 ,−1107503

12000 , 4837443107
7200000 )±

−5522
81

−

−2346601
24000

±

(10; 3
2 , 3, 0) (581

30 ,−2606009
36000 , 99502062989

194400000 )± −29607907
648000

±

Table 1: sl(2) sector(s) states. Here and in table 2 the dimension of the states are given to

three-loops by D0 + g2D2 + g4D4 + g6D6, R and B correspond to the (absolute value of) R<>

and B<> eigenvalues, and L gives the length of the state. The P exponent of the anomalous

dimensions denotes parity. The last column gives the shift in anomalous dimension due to the

δhn−1 structure (4.22), equivalently the leading β
(n)
2,3 phase contribution, in units of β

(n)
2,3 g

2n+2.

and the fermionic sl(2) sector (with modules spanned by ψ
(n)
> ). The results, listed in

table 2, are again in complete agreement with the Bethe ansatz. These many tests of the

proposal lead us to conclude, with almost complete certainty, that the three-loop solution

for the planar dilatation generator presented here is the field theory solution.

5.4 Tests of the proposal for the leading phase contribution

To test the proposal for δh (4.22) corresponding to the β2,3 structure, we simply repeat the

tests of the previous sections for the corresponding contribution to the dilatation generator,

which at O(λn+1) is

2
λn+1

n
{Ŝ>

0 , [Ŝ
<
0 , {Q̂<

0 , [Q̂
>
0 , δhn−1]}]}+ 2

λn+1

n
{Q̂<

0 , [Q̂
>
0 , {Ŝ>

0 , [Ŝ
<
0 , δhn−1]}]}. (5.16)

Again, we emphasize that this only includes the leading β2,3 structure, and not subleading

corrections.

Restricting to the su(2) sector, and switching back to coupling constant g, we find that
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(D0;R,L,B)
(

D2,D4,D6

)P
δDphase

(7; 1
2 , 5, 2) (20,−80, 580)− −80−

(15
2 ; 3

2 , 6,
3
2 ) (16,−56, 392)± −16±

(8; 1, 6, 2) (16,−56, 368)+ −64+

(17
2 ; 2, 7, 3

2 ) (14,−48, 332)± −26±

(9; 3
2 , 7, 2)

(12.7922,−37.5972, 216.187)−

(18.2198,−68.4112, 507.403)−

(24.988,−97.9916, 708.41)−

−40.7052−

−24.488−

−86.8068−

(19
2 ; 5

2 , 8,
3
2 )

(12,−38, 247)±

(16,−58, 427)±

−24±

−8±

(15
2 ; 0, 3, 3

2 ) (20,−245
3 , 21475

36 )± −260
3

±

(19
2 ; 0, 3, 3

2 ) (133
6 ,−131117

1440 , 1039405829
1555200 )± −849121

8640

±

Table 2: States including fermions. The three-loop dimensions for the su(1|1) subsector states

(R 6= 0) actually follow from the known Hamiltonian for this subsector [59], and the fermionic sl(2)

sector three-loop dimensions were computed using Baxter equation methods in [77].

the homogeneous solution contributes

δD = g2n+2β
(n)
2,3

(

− 4{}+ 12{1} − 6{1, 3} − 4({1, 2} + {2, 1})

+4({1, 3, 2} + {2, 1, 3}) − 2{2, 1, 3, 2}
)

. (5.17)

This is in perfect agreement with the su(2) sector contribution for β2,3 [60].

Next, again we consider S-matrix elements. As above, we have computed both the

su(1|1) S-matrix and sl(2) S-matrix, and the su(2) sector S-matrix must be correct since

we just checked that sector’s dilatation generator. We find that contribution to the S-

matrix from δh (4.22) exactly matches the leading (nontrivial) contribution from the 2, 3

component of the phase [6, 67],

S(p1, p2) 7→ e2iθ2,3(p1,p2)S(p1, p2)

θ
(n)
2,3 (p1, p2) = g(2n)β

(n)
2,3 (q2(p1)q3(p2)− q3(p1)q2(p2)). (5.18)

Here q2 is the eigenvalue of the dilatation generator (divided by g2), and q3 is the eigenvalue

of the next local (parity-odd) charge. For the phase factor, and to leading order, we only

need the one-magnon dispersion relation and its analogue for q3,

q2(p) = 4 sin2
(p

2

)

+O(g2), q3(p) = 4 sin2
(p

2

)

sin p+O(g2),

θ
(n)
2,3 (p1, p2) = g(2n)β

(n)
2,3

(

16 sin2
(p1

2

)

sin2
(p2

2

)

(sin p2 − sin p1) +O(g2)
)

. (5.19)

The predictions for the gauge theory coefficients β
(n)
2,3 can be found in [13], along with the

predictions for all the coefficients for the higher-charge generalizations.
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Finally, to confirm that we have found the leading β2,3 solution for more than two

excitations, we compute the contributions of (5.16) to anomalous dimensions, as shown in

the last columns of table 1 and table 2. In all cases the results are in perfect agreement

with the predictions from the Bethe ansatz that follow from including the β2,3 factor.

Multiplying the last columns of both tables, for instance, by 4ζ(3) gives the Bethe ansatz

prediction for the transcendental part of four-loop anomalous dimensions [13].

Especially because of the simple form of the proposal, we conclude from these many

successful comparisons that (4.22) gives the leading β2,3 solution for h.

6. Additional algebraic considerations

Here we consider the possibility of relaxing some requirements of the algebraic ansatz. A

priori, algebraic generalizations may be needed for applications beyond the planar three-

loop dilatation generator.28 Still, we will always assume that there exists some generator(s)

of ± translations in λ. In the first subsection this generator will still a B singlet, while in

the second subsection a B-triplet will be used.

6.1 A more general ansatz for a B-singlet X

For this subsection, still assume the first step of the algebraic ansatz, the existence of a

generator of λ-translations, X. However, do not assume X is built iteratively from psu(1|1)2
generators and an auxiliary generator. Examining the proof that shifts generated by X

preserve the psu(1|1)2 relation

{Q̂{a, Ŝb}} = 0, (6.1)

which was given after (3.9), we see that it is only necessary for X to satisfy

{Q̂{a, [Ŝb},X]} = 0. (6.2)

Next, consider commutators of psu(1|1)2 and psu(1, 1|2) supercharges, which were discussed

after (3.14). These commutators imply that the first equation of the third part of the

algebraic ansatz (3.3) can be relaxed to the equations

{Qa+b, [Ŝc,X]} = 0, (6.3)

and the Hermitian conjugate equations.

Finally, we derive the necessary condition for the commutators between psu(1, 1|2)
generators. The commutators between raising and lowering supercharges are

{Qa+c(λ),Qb−d(λ)} = −λ εab{Q̂c(λ), Ŝd(λ)} + λ-independent. (6.4)

Applying ∂/∂λ yields (all generators are functions of λ, which we suppress),

{Qb−d, [Qa+c,X]} − {Qa+c, [Qb−d,X]} = −εab {Q̂c, Ŝd} − λεab {Ŝd, [Q̂c,X]}
+λεab {Q̂c, [Ŝd,X]}. (6.5)

28Recall that in the introduction we conjectured that such generalizations are not needed for the planar

theory at any order, at least asymptotically.

– 29 –



J
H
E
P
0
7
(
2
0
0
8
)
1
1
4

After using the Jacobi identity and substituting (6.4), the left hand side simplifies to

−λ εab [{Q̂c, Ŝd},X] − 2{Qa+c, [Qb−d,X]}. (6.6)

Expanding the first commutator and using the psu(1|1)2 commutation relations, we can

combine these equations into the remarkably simple form

{Qa+c, [Qb−d,X]} + λ εab {Q̂c, [Ŝd,X]} =
1

4
εabεcdH. (6.7)

The three equations (6.2), (6.3) (and Hermitian conjugate), and (6.7) are necessary

and sufficient conditions for X. Consider again the case of the planar psu(1, 1|2) sector.

Assuming integrability, it is now immediately apparent that X can be shifted by linear

combinations of any of the local higher charges Q(i) that commute with the dilatation gen-

erator λH and all of the extended psu(1, 1|2)×psu(1|1)2 generators. However, these trans-

formations of X have no physical consequence precisely because X only appears through

commutators with the ordinary symmetry generators. It is an open problem whether there

are solutions for X that both satisfy these more general equations, and are not physically

equivalent to an iterative solution in terms of psu(1|1)2 generators and some auxiliary h.

If no more general solutions exist, the conjecture that the iterative ansatz applies at all

orders to the gauge theory will automatically be satisfied.

6.2 A solution using a B-triplet

We now present an alternative consistent algebraic ansatz for the solution in terms of a

B-triplet X̃ab. We then show that the iterative three-loop solution for the psu(1, 1|2) sector

using h can be put in this form via a similarity transformation.

The ansatz depends on auxiliary generators X̃ab that satisfy

[X̃ab,Bcd] = εcbX̃ad− εadX̃cb. (6.8)

They also commute with R and J+−
0 . The X̃ab generate translations in λ of the supercharges

as

[Qa, X̃bc] =
1

2
εba ∂

∂λ
Qc +

1

2
εca

∂

∂λ
Qb,

[Q̂a, X̃bc] = −1

2
εba ∂

∂λ
Q̂c− 1

2
εca

∂

∂λ
Q̂b, [Ŝa, X̃bc] = −1

2
εba ∂

∂λ
Ŝc− 1

2
εca

∂

∂λ
Ŝb. (6.9)

We have suppressed the first two indices of the psu(1, 1|2) supercharges since these relation

do not depend on them. The sl(2) subalgebra generators not included here follow from

closure of the psu(1, 1|2) algebra. Note that these relations imply

∂

∂λ
Qa = −2

3
εbc[Q

b, X̃ca],
∂

∂λ
Q̂a =

2

3
εbc[Q̂

b, X̃ca],
∂

∂λ
Ŝa =

2

3
εbc[Ŝ

b, X̃ca]. (6.10)

For a realization of this ansatz to satisfy all commutation relations one must only check,

for example,

[Qaβ>, X̃≫] = 0, [Q̂>, X̃≫] = 0, [Ŝ>, X̃≫] = 0, (6.11)

{Qa+<, [Qb−>, X̃<>]}+ λεab{Ŝ>, [Q̂<, X̃<>]} = −1

8
εabH. (6.12)
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The equations on the first line ensure that the derivatives of the supercharges transform

properly with respect to B and that (6.9) can be satisfied. Using B symmetry, nilpotency

of supercharges, and the Jacobi identity, one can then show that the psu(1|1)2 algebra is

satisfied, that the psu(1, 1|2) and psu(1|1)2 generators commute, and that commutation

relations for two Q+ or for two Q− are satisfied. Since this check is straightforward and

involves similar steps to those used previously, we leave it to the reader. To obtain the

necessary condition for the remaining requirements for psu(1, 1|2) generators, one can use

similar steps to those leading to (6.7) combined with (6.9). This results in (6.12). Again,

the details are left as an exercise for the reader.

Now, we again consider the (seemingly) less general ansatz presented earlier in terms

of h. A similarity transformation maps that solution to a solution of the form (6.9) as

follows. For all Lie algebra generators J ,

∂

∂λ
J 7→ ∂

∂λ
J +

1

2
[J, [h,H]]. (6.13)

This results in a “new” solution of the form (6.9) with

X̃ab = {Q̂{a, [Ŝb}, h]}. (6.14)

Of course, since in this case the two solutions are related by a similarity transformation,

the spectrum of the dilatation generator is unchanged. Also, the consistency condition for

X̃ab (6.11) is satisfied because of the nilpotency of supercharges and the first equation for

h of (3.3).

We explicitly check this relationship for Ŝ> and for Qa−<, as examples. First consider

Ŝ>. In the original form of the solution,

∂

∂λ
Ŝ> = −[Ŝ>,X]

= −[Ŝ>, {Q̂>, [Ŝ<, h]}], (6.15)

where we used (3.13) to reach the second line. Adding the similarity transformation (6.13)

and using the psu(1|1)2 relations and the Jacobi identity yields

−[Ŝ>, {Q̂>, [Ŝ<, h]}] +
1

2
[Ŝ>, [h,H]] = −[Ŝ>, {Q̂>, [Ŝ<, h]}] − [Ŝ>, [h, {Q̂>, Ŝ<}]]

= [Ŝ>, {Ŝ<, [Q̂>, h]}]
= [Ŝ<, {Q̂>, [Ŝ>, h]}]
= [Ŝ<, X̃≫], (6.16)

as in (6.9). Next we show that the similarity transformation also works for Qa−<. In the

original solution

∂

∂λ
Qa−< = −[Qa−<,X]

= −[Qa−<, {Q̂>, [Ŝ<, h]}] − [Qa−<, {Ŝ>, [Q̂<, h]}]
= −[Qa−<, {Q̂>, [Ŝ<, h]}] (6.17)
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We used the expression for X (3.5) and the first equation of (3.3). Adding the similarity

transformation, and again using the psu(1|1)2 relations, the Jacobi identity, and the first

equation of (3.3) results in

−[Qa−<, {Q̂>, [Ŝ<, h]}] +
1

2
[Qa−<, [h,H]] = [Qa−<, {Ŝ<, [Q̂>, h]}]

= −[Qa−>, {Ŝ<, [Q̂<, h]}]
= [Qa−>, {Q̂<, [Ŝ<, h]}]
= [Qa−>, X̃≪], (6.18)

in agreement with the B-triplet ansatz (6.9). Similar checks can be performed for Qa+<

and Q̂> (for example), and then B symmetry ensures that the similarity transformation

indeed maps the original solution into the form of (6.9).

It is possible that there are solutions of triplet form that cannot be related by a

similarity transformation to singlet ansatz solutions. If that is the case, such solutions

may be relevant to the psu(1, 1|2) sector of the gauge theory at higher loops, potentially

falsifying our conjecture. The results of this work imply that at least to three loops in

the planar psu(1, 1|2) sector, and for the leading β2,3 phase contribution, there is no need

to consider the B-triplet ansatz. Also, extending the type of iterative solution found in

this work to larger sectors of the gauge theory may require an ansatz more similar to this

one then to the singlet ansatz; it may be necessary for the auxiliary generators to carry a

charge with respect to one or more Cartan generators.

7. Conclusions and discussion

We have presented an algebraic solution for λ-dependent representations of the extended

psu(1, 1|2) × psu(1|1)2 algebra. This solution depends on a generator of λ-translations,

X. In turn, X is built simply from supercharges and from one auxiliary generator h that

must satisfy certain Serre-relation-like equations. We applied this ansatz to the psu(1, 1|2)
sector of N = 4 SYM, extending the results of [62] to three loops. Strong evidence implies

that the new solution for h at NLO gives the three-loop planar dilatation generator of

this sector, with wrapping interactions included naturally. Also, we identified two types

of homogeneous solutions for h1. While we used maximal transcendentality to identify the

apparent gauge theory solution, we gave evidence and expect that a simple gauge theory

structural constraint eliminates this homogeneous freedom at three loops. Also, one of

these new homogeneous solutions corresponds to the leading phase contribution of the

Beth ansatz, which appears starting at four loops.

As stated in the introduction, these successes of the algebraic ansatz lead us to conjec-

ture that it is satisfied by the gauge theory at all orders. Of course, the conjecture would be

automatically true if the algebraic ansatz includes all solutions of the Lie algebra and basic

structural constraints. Such uniqueness of the algebraic ansatz is plausible partly because

the ansatz automatically ensures the correct multiplet structure for the length-changing su-

percharges. Perhaps representation theory analysis can answer this question of uniqueness.
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Clearly there is more to be understood about the algebraic solution, even independently

of its gauge theory realization. Adding h to the set of psu(1, 1|2) × psu(1|1)2 generators

does not yield a closed algebra. Instead, it is reasonable to believe that this enlarged

set of generators can be embedded (usefully) within a closed algebraic structure, but this

hypothesized algebraic structure remains mysterious. Perhaps the simplest possibility is to

use the maximally extended version of psu(1, 1|2) × psu(1|1)2, which includes a B-triplet

of central charges that vanish for the gauge theory representation. Another possibility is

the exceptional superalgebra d(2, 1; ǫ), considered in the context of AdS/CFT first in [9],

and more recently in [78, 79].

Even if the algebraic ansatz gives the most general solution for the psu(1, 1|2) spin

chain, beyond three loops it appears that there still will be vast freedom for homogeneous

solutions. The most direct way to proceed is to consider larger sectors then psu(1, 1|2),29
which may eliminate the integrability-breaking homogeneous solutions. This is a challeng-

ing problem because larger sectors have greater complexity due to symmetry generators

that expand in all integer powers of g with more general length-changing interactions. Still,

the remarkably simple algebraic form of the psu(1, 1|2) sector solution provides hope that

significant progress is possible. More concretely, this solution gives an important constraint

since any solution for a larger sector must be compatible with it. Also, understanding how

strong Lie algebra constraints are for the full theory is an important problem. It is pos-

sible that understanding this would be sufficient to prove integrability. If instead the full

psu(2, 2|4) spin chain has homogeneous (structurally allowed) solutions that break integra-

bility, it would lead to the interesting question of what further gauge theory properties are

required for integrability.

Alternatively one could fix the homogeneous freedom by instead assuming integrability.

The resulting solutions would hopefully then lead to a better understand of the gauge theory

origin of integrability. For integrable solutions, the Lie algebra symmetry is enhanced

by generators that act bilocally on the spin chain, which in turn generate an infinite-

dimensional Yangian symmetry [80]. Beyond the leading order result for the full N = 4

planar theory [81, 82], previous work30 has focused on sectors of rank one [69, 97 – 99] or

rank two [100], which may be too small to reveal iterative structure. For the psu(1, 1|2)
sector, an exciting prospect is that some auxiliary generator(s) of λ-translations can also be

used to obtain corrections to the nonlocal Yangian generators, including Yangian generators

corresponding to the su(2) automorphism [63]. Another possibility is that the iterative

structure of the local spin-chain generators described here can be extended to the higher

local charges associated with integrability. In any case, constructing Yangian generators

or higher local charges would reveal additional constraints on h, of course eliminating any

integrability-breaking homogeneous solutions. Related to integrability, it would also be

very interesting to find the three-loop psu(1, 1|2) sector Baxter operator, which may be a

step toward a R-matrix formulation of the long-range asymptotic spin chain.

There are other exciting possible directions for further research. For instance, the

29The psu(1, 2|3) sector or the full psu(2, 2|4) spin chain are probably the only useful choices.
30Also, the Hopf algebra structure and Yangian symmetry of the AdS/CFT S-matrix has been investigated

in [79, 83 – 95]. Also see [96].
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algebraic solution’s iterative structure may allow for a generalization of the relation of

the su(2) subsector to the Hubbard model. Up to wrapping interactions, the rational

part of the su(2) sector dilatation generator corresponds to a strong coupling expansion

of the Hubbard model [101]. Finding a generalization of the Hubbard model related in a

parallel way to the psu(1, 1|2) sector would likely give a more efficient way to compute (the

rational part of) h, and of course would be of great interest for multiple other reasons. The

regular transcendentality pattern and integer coefficients appearing in h at the first two

orders are perhaps hints of such a possible relation. Alternatively, consider the relationship

between anomalous dimensions and the BFKL equation [102 – 104], which constrains the

singularities of twist-two anomalous dimensions analytically continued for negative integer

spin, as analyzed in [48]. Perhaps the connection to the BFKL equation can give useful

constraints directly for h. Finding relations to a generalization of the Hubbard model or to

BFKL physics also may provide information about the wrapping interactions for h, which

are needed starting at four loops if the iterative algebraic structure is to apply beyond the

asymptotic regime.

One may wonder about a strong coupling expansion of the algebraic ansatz. It seems

that such an expansion cannot be related simply and directly to the string dual because

there is no closed psu(1, 1|2) sector at strong coupling. To make contact in this way, it is

necessary to generalize such an algebraic ansatz to all of psu(2, 2|4). On the other hand,

the successful interpolations from weak to strong coupling mentioned in the introduction

depended crucially on the phase. Therefore, it may be instructive to find the higher

homogeneous solutions for h corresponding to the leading βr,s phase contributions (for

s > 3). Since these homogeneous solutions only need to satisfy equations involving leading

order Lie algebra generators, this should be a tractable problem, especially given the simple

form of the β2,3 solution (4.22).

Finally, there are interesting possible generalizations beyond planar N = 4 SYM. As

discussed in section 4.6, it is straightforward to generalize the algebraic ansatz to the non-

planar theory precisely because the ansatz is algebraic. Furthermore, the limited number

of independent nonplanar interaction structures at low orders suggest that a naive lifting of

the solution may give the nonplanar three-loop dilatation generator. It would be wonderful

if this could be verified. Also, related to the above discussion of the connection to the BFKL

equation, it would be very interesting to find other representations of the extended algebra

that realize the algebraic ansatz. Particularly interesting are those with continuous values

of su(1, 1) spin, which is a feature of certain nonlocal gauge theory operators [105, 106]

that have been investigated recently [107].
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A. Relations to previous notations

First we review the restriction of the fullN = 4 SYM psu(2, 2|4) spin chain to the psu(1, 1|2)
sector, including the relation of the psu(1, 1|2) symmetry generators and “fields” to those

of the full spin chain. Then we present the mapping between the notation and conventions

of this work and those of [62], where the two-loop psu(1, 1|2) sector dilatation generator

was first obtained.

States of the N = 4 SYM spin chain (gauge-invariant local operators) can be classified

according to eigenvalues with respect to su(2)L × su(2)R Lorentz and su(4) R-symmetry

generators, which we denote by Lα
β, L̇α̇

β̇, and Ra
b. Then the psu(1, 1|2) sector contains

the states of the full psu(2, 2|4) spin chain with classical dimension D0 satisfying [65, 64]

D0=L
1
1 − L2

2 − 2R4
4,

D0=L̇
1
1 − L̇2

2 + 2R3
3. (A.1)

The psu(1, 1|2) symmetry generators are related simply to generators of the psu(2, 2|4)
chain. The relation to the notation of [65] is as in [63]:

Qa+> = Qa
1, Qa+< = εabQ̇1b, Rab =

1

2
εacRb

c +
1

2
εbcRa

c,

Qa−< = εabS1
b, Qa−> = Ṡa1,

J++ = P11, J−− = K11, J+− =
1

2
D +

1

2
L1

1 +
1

2
L̇1

1. (A.2)

However, the psu(1|1)2 generators have been rescaled by
√
λ,

√
λ Q̂< = Q̇23,

√
λ Q̂> = −Q4

2,√
λ Ŝ> = Ṡ32,

√
λ Ŝ< = S2

4. (A.3)

This rescaling is possible because these generators, within the psu(1, 1|2) sector and before

the rescaling, expand at λ = 0 in only odd powers of
√
λ . Again using the notation of [65],

the elements of the psu(1, 1|2) module are related to the “fields” of N = 4 SYM as [63],

∣

∣φ(n)
a

〉

≃ 1

n!
(D11)

nΦa3,
∣

∣ψ
(n)
<

〉

≃ 1

n!
√
n+1

(D11)
nΨ̇4

1,
∣

∣ψ
(n)
>

〉

≃ 1

n!
√
n+1

(D11)
nΨ13.

(A.4)

Next we give the mapping from the symmetry generators and states of this work to

those of [62]. In addition to some sign changes, the R index values 1, 2 have to be replaced

by l, and the B index values <,> are mapped to ↔. More precisely,

Q1+> = −−→Q+↓, Q2+> = −−→Q+↑, Q1+< =
←−
Q+↓, Q2+< = −←−Q+↑,

Q1−> = −−→Q−↓, Q2−> = −−→Q−↑, Q1−< =
←−
Q−↓, Q2−< = −←−Q−↑,

R11 = R↓↓, R22 = −R↑↑, R12 = −1

2
R0,

J++ = J++, J−− = J−−, J+− =
1

2
J0,

√
λ Q̂> = −−→T +,

√
λ Q̂< = −←−T +,

√
λ Ŝ> = −−→T−,

√
λ Ŝ< =

←−
T−. (A.5)
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For the module elements the relations are

∣

∣φ
(n)
1

〉

=
∣

∣φ↑n
〉

,
∣

∣φ
(n)
2

〉

=
∣

∣φ↓n
〉

,
∣

∣ψ
(n)
<

〉

= −
∣

∣

−→
ψ n

〉

,
∣

∣ψ
(n)
>

〉

=
∣

∣

←−
ψ n

〉

. (A.6)

Finally, note that [62] used g as the coupling constant, with the normalization g2 = λ/(8π2).

B. A Chevalley-Serre basis for psu(1, 1|2) ⋉ R
3

Presenting the centrally extended psu(1, 1|2) algebra in a (fermionic) Chevalley-Serre basis

provides a simple way to check that the proof of section 3.2 includes all generators of this

(sub-)algebra, as will be explained below. We need the central extension to represent the

algebra in this basis, but these central charges vanish in the gauge theory realization and in

the algebra considered throughout the rest of this work. Since this algebra only differs by

a change of signature from the psu(2|2) ⋉ R
3 algebra recently considered in [93] in relation

to the Yangian of the AdS/CFT S-matrix, we will use the same (standard) presentation

and notation for the basis, commutation relations, and Serre relations.

The basis consists of three Cartan elements Hi and three pairs of fermionic elements

E±
i satisfying

[Hi,Hj ] = 0, (B.1)

[Hi,E
±
j ] = ±aijE

±
j , (B.2)

{E+
i ,E

−
j } = δijHi. (B.3)

The Cartan matrix aij is

aij =







0 −1 1

−1 0 0

1 0 0






. (B.4)

Furthermore, there are Serre relations for the E±
i

[E±
1 , {E±

1 ,E
±
2 }] = [E±

2 , {E±
2 ,E

±
1 }] = 0, {E±

2 ,E
±
3 } = central. (B.5)

The above presentation matches that of [93]. However, the difference now appears

through the realization of the Hi and E±
i in terms of generators. To match the commutation

relations given in section 2.2, we can choose for instance

E+
1 = Q2+>, E−

1 = Q1−<, H1 = −R12 − J+− − C<>,

E+
2 = Q1+<, E−

2 = Q2−>, H2 = R12 − J+− + C<>,

E+
3 = Q2−<, E−

3 = Q1+>, H3 = −R12 + J+− + C<>. (B.6)

Here C<> is the central element of the triplet of central charges that extend psu(1, 1|2).
We now briefly explain how the proof in section 3.2 covers all of the commutation

and Serre relations given above. Recall that the first itemized step of that proof showed

that commutation relations between any two lowering (raising) generators are satisfied for

the algebraic solution, and the last itemized step showed that all of the commutation re-

lations between a lowering and a raising psu(1, 1|2) supercharge are satisfied. Now (B.1)
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follows from the vanishing of the central charges and the preservation of manifest R symme-

try. (B.2) follows for the above reasons combined with the vanishing commutator between

X and J+−
0 and the centrality of δD. Instances of (B.3) are either included within the

set of commutators between raising and lowering psu(1, 1|2) supercharges, or within the

set of commutators between two raising (lowering) generators. Finally, the first two Serre

relations follow from the proof for commutators between two raising (lowering) generators,

and the last Serre relation (with “central”= 0) is included within the set of commutators

between raising and lowering psu(1, 1|2) generators.

C. Additional details of proof of section 3

Here we prove that (3.19) remains satisfied after shifts in λ generated by X. Recall

that (3.19) is

{Q1+>,Q2−<} = R12 + J+−. (C.1)

Taking the derivative, using the Jacobi identity, and substituting (C.1) back into the re-

sulting equation leads to

∂

∂λ
{Q1+>(λ),Q2<(λ)}|λ=λ0

= {[Q1+>(λ0),X(λ0)],Q
2−<(λ0)} (C.2)

−{Q1+>(λ0), [Q
2−<(λ0),X(λ0)]}

= [J+−(λ0),X(λ0)]− 2{Q1+>(λ0), [Q
2−<(λ0),X(λ0)]}.

Now we will simplify the two terms of the last line separately. For the first term, apply-

ing (2.2) and (2.8) yields

[J+−(λ0),X(λ0)] = λ0[{Q̂<(λ0), Ŝ
>(λ0)},X(λ0)]

= λ0{[Q̂<(λ0),X(λ0)], Ŝ
>(λ0)}+ λ0{Q̂<(λ0), [Ŝ

>(λ0),X(λ0)]}
= −λ0{[Q̂<(λ0), {Ŝ<(λ0), [Q̂

>(λ0), h(λ0)]}], Ŝ>(λ0)}
+λ0{Q̂<(λ0), [Ŝ

>(λ0), {Q̂>(λ0), [Ŝ
<(λ0), h(λ0)]}]}. (C.3)

The last equality follows from (3.13).

For the second term of the last line of (C.2), we first replace X with a single nested

commutator, using the expression for X (3.5), the vanishing anticommutators between

psu(1, 1|2) and psu(1|1)2 supercharges, and the first equation for h of (3.3). Then vanishing

anticommutators between psu(1, 1|2) and psu(1|1)2 supercharges allow us to apply the

second equation of (3.3).

{Q1+>(λ0), [Q
2−<(λ0),X(λ0)]} = {Q1+>(λ0), [Q

2−<(λ0), {Q̂>(λ0), [Ŝ
<(λ0), h(λ0)]}]}

= {Q̂>(λ0), [Ŝ
<(λ0),−

1

2
B<> +

1

4
L + λ0X

><(λ0)]}

=
1

2
{Q̂>(λ0), Ŝ

<(λ0)}+ λ0{Q̂>(λ0), [Ŝ
<(λ0),X

><(λ0)]}

= −1

4
H(λ0)

+λ0{Q̂>(λ0), [Ŝ
<(λ0), {Q̂<(λ0), [Ŝ

>(λ0), h(λ0)]}]}. (C.4)
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The simplification of the last two steps depends on commutation relations of the ordi-

nary extended Lie algebra generators given in section 2.2, as well as substitution for X<>

using (3.2).

The next step is to substitute this result and (C.3) back into (C.2), and to combine

and cancel terms. Then (3.13) allows nested commutators to be replaced with X. The

resulting expression can be identified with a derivative with respect to λ, using the psu(1|1)2
commutation relations (2.8).

∂

∂λ
{Q1+>(λ),Q2<(λ)}|λ=λ0

=
1

2
H(λ0)

−λ0{Q̂<(λ0), [Ŝ
>(λ0), {Q̂>(λ0), [Ŝ

<(λ0), h(λ0)]}]}
−λ0{Ŝ>(λ0), [Q̂

<(λ0), {Ŝ<(λ0), [Q̂
>(λ0), h(λ0)]}]}

=
1

2
H(λ0)− λ0{Q̂<(λ0), [Ŝ

>(λ0),X(λ0)]}

+λ0{[Q̂<(λ0),X(λ0)], Ŝ
>(λ0)}

=
∂

∂λ
λ{Q̂<(λ), Ŝ>(λ)}|λ=λ0

=
∂

∂λ
(J+−(λ)− J+−

0 )|λ=λ0

=
∂

∂λ
J+−(λ)|λ=λ0

=
∂

∂λ
(R12 + J+−(λ))|λ=λ0

. (C.5)

The third to last step follows from (2.8) and the identification between psu(1, 1|2) and

psu(1|1)2 central charge(s) (2.2), and the remaining steps use the λ-(in)dependence of

generators. Since the last expression is the derivative of the right side of the initial equa-

tion (3.19), the proof is now complete.

D. The solution for h1

We now give the explicit form of h1 acting on two adjacent sites. Like the one-loop dilatation

generator [63], it can be written in terms of seven coefficient functions:

(4π)2 h1

∣

∣φ(j)
a φ

(n−j)
b

〉

=
n

∑

k=0

f1(n, j, k)
∣

∣φ(k)
a φ

(n−k)
b

〉

+
n

∑

k=0

f2(n, j, k)
∣

∣φ
(k)
b φ(n−k)

a

〉

+
n−1
∑

k=0

√

k + 1

n− kf3(n, j, k)εabε
cd

∣

∣ψ
(k)
c ψ

(n−1−k)
d

〉

,

(4π)2 h1

∣

∣φ(j)
a ψ

(n−j)
b

〉

=

n
∑

k=0

√

n− k + 1

n− j + 1
f4(n, j, k)

∣

∣φ(k)
a ψ

(n−k)
b

〉

+
n

∑

k=0

√

k + 1

n− j + 1
f5(n, j, k)

∣

∣ψ
(k)
b φ(n−k)

a

〉

,
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(4π)2 h1

∣

∣ψ
(j)
a φ

(n−j)
b

〉

=
n

∑

k=0

√

k + 1

j + 1
f4(n, n− j, n − k)

∣

∣ψ
(k)
a φ

(n−k)
b

〉

+

n
∑

k=0

√

n− k + 1

j + 1
f5(n, n− j, n− k)

∣

∣φ
(k)
b ψ

(n−k)
a

〉

,

(4π)2 h1

∣

∣ψ
(j)
a ψ

(n−j)
b

〉

=
n

∑

k=0

√

(k + 1)(n − k + 1)

(j + 1)(n − j + 1)
f6(n, j, k)

∣

∣ψ
(k)
a ψ

(n−k)
b

〉

+

n
∑

k=0

√

(k + 1)(n − k + 1)

(j + 1)(n − j + 1)
f7(n, j, k)

∣

∣ψ
(k)
b ψ

(n−k)
a

〉

+
n+1
∑

k=0

√

j + 1

n− j + 1
f3(n+ 1, k, j)εabε

cd
∣

∣φ(k)
c φ

(n+1−k)
d

〉

. (D.1)

The fn are built out of a few ingredients. First, θ(n) is the step function (one for n ≥ 0

and 0 otherwise). Also, the ordinary and generalized harmonic numbers, (4.16) and (5.14),

appear repeatedly. The last ingredients are further generalizations of the harmonic sums

to two arguments:

S̃1,1(m,n) =

n
∑

i=1

S(i+m)

i
, S̃2,1(m,n) =

n
∑

i=1

S(i+m)

i2
. (D.2)

The first new function S̃1,1 appears multiple times. It is similar to S1,1, but note that

the argument in the numerator is shifted by the first argument of S̃1,1. The second new

function, S̃2,1, only appears once explicitly in the expressions below (in the δjk term of f̃1).

Now we are ready to give the explicit form of the fn. Using symmetries under in-

terchanges of arguments (partly due to Hermiticity and parity), we can write relatively

compact expressions. The bosonic coefficient f2 takes the simplest form,

f2(n, j, k) =
1

4

(

f̃2(n, j, k) + f̃2(n, k, j) + f̃2(n, n− j, n − k) + f̃2(n, n− k, n − j)
)

,

f̃2(n, j, k) =
1

(n+1)

(

S2(j)−S1,1(n)−S(j)S(k)−S(j)S(n − k)+2S(j)S(n+1)
)

. (D.3)

We write the other purely bosonic coefficient, f1, in terms of f2 and two new functions,

f1,0 and f̃1. f1,0 governs interactions with the same initial and final states, and f̃1 applies

otherwise.

f1(n, j, k) = −f2(n, j, k) +
1

2
δjk(f1,0(n, j) + f1,0(n, n− j))

+
δj 6=k

4

(

f̃1(n, j, k) + f̃1(n, k, j) + f̃1(n, n− j, n − k) + f̃1(n, n− k, n − j)
)

,

f1,0(n, j) = 2S3(j)− 5S2,1(j)− 2S1,2(j) + 2S1,1,1(j)− S2(j)S(n − j) + S̃2,1(j, n − j) ,

f̃1(n, j, k) =
1

j − k
(

− S2(j) + 2S1,1(j) + S(j)S(n − k) + 2S̃1,1(j, n − j)
)

+
1

|j − k|
(

− S1,1(|j − k| − 1)− 2S(j)S(|j − k|) + 4S̃1,1(j, k − j)
)

. (D.4)
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Note that S̃1,1 is zero if its second argument is negative or zero, by the definition (D.2).

Next we give f5, one of the mixed boson-fermion functions.

f5(n, j, k) =
1

4(k + 1)

(

f̃5(n, j, k) + f̃5(n, n− k, n− j)
)

,

f̃5(n, j, k) = S2(j) + 2S1,1(k + 1)− S1,1(n+ 1)− S(j)S(k + 1)

+S(j)S(n − j + 1) − S(j)S(n − k) + S(j)S(n + 1)

+S(k + 1)S(n + 1)− 2S̃1,1(j, n − j + 1)

+θ(j − k − 1)
(

S1,1(j − k − 1) + S(j)S(j − k − 1)

+S(k + 1)S(j − k − 1)− 2S̃1,1(k + 1, j − k − 1)
)

+θ(k − j)
(

2S(k + 1)/(k + 1)− S1,1(k − j)− S(j)S(k − j)

−S(k + 1)S(k − j) + 2S̃1,1(j, k − j)
)

. (D.5)

Finally, the remaining four functions are given most efficiently as sums of the above three

functions and additional functions, gi,

f3(n, j, k) = f2(n, j, k) − f5(n, j, k) −
g1(n, j, k)

4(k + 1)
,

f4(n, j, k) = − k

n− k + 1
f3(n, j, k − 1) + f1(n, j, k) −

g2(n, j, k)

4(n− k + 1)
,

f6(n, j, k) =
(n− j + 1)

n− k + 1
f3(n+ 1, j, k) + f4(n, j, k) −

1

4
g3,1(n, j, k) −

g3,2(n, j, k)

4(n − k + 1)
,

f7(n, j, k)=−(n−j+1)

n−k+1
f3(n+1, j, k)−f5(n, j, k)−

g4,1(n, j, k)

4(n+ 2)
− g4,2(n, j, k)

4(n−k+1)
. (D.6)

The gi appear in the expansion of [Q1+<
0 , h1] as

(4π)2[Q1+<
0 , h1]

∣

∣φ
(j)
2 φ

(n−j)
1

〉

=
g1(n, j, k)

4
√
k + 1

∣

∣ψ
(k)
> φ

(n−k)
2

〉

+
g2(n, j, k)

4
√
n− k + 1

∣

∣φ
(k)
2 ψ

(n−k)
>

〉

,

(4π)2[Q1+<
0 , h1]

∣

∣φ
(j)
1 ψ

(n−j)
<

〉

=

(
√
k + 1

√
n− k + 1

4
√
n− j + 1

g3,1(n, j, k)

+

√
k + 1

4
√
n− j + 1

√
n− k + 1

g3,2(n, j, k)

)

∣

∣ψ
(k)
> ψ

(n−k)
<

〉

+

(
√
k + 1

√
n− k + 1

4
√
n− j + 1(n + 2)

g4,1(n, j, k)

+

√
k + 1

4
√
n− j + 1

√
n− k + 1

g4,2(n, j, k)

)

∣

∣ψ
(k)
< ψ

(n−k)
>

〉

+ · · · (D.7)

– 40 –



J
H
E
P
0
7
(
2
0
0
8
)
1
1
4

The explicit expressions for the gi are

g1(n, j, k) =
−S(j) + S(n+ 1)

n− j + 1
+

2S(j) + 2S(n− j)− 1/(k + 1)

n+ 1

+θ(j − k − 1)

(−2S(n − k)
n− k +

−S(n− k) + S(j − k − 1)

n− j + 1

)

+θ(k − j)−4S(n − j + 1) + S(n− k) + S(k − j)
n− j + 1

,

g2(n, j, k) =
S(j)− S(n+ 1)

n− j + 1
+
−2S(j) − 2S(n− j) + 1/(n − k + 1)

n+ 1

+δjk

(

− S2(n− j + 1) + 3S2(n− j) + 2S1,1(n− j + 1)− 4S1,1(n− j)
)

+θ(j − k − 1)

(

S(n − k)− S(j − k)
n− j + 1

+
2S(j − k)
j − k

)

+θ(k − j)
(

4S(n− j + 1)− S(n− k + 1)− S(k − j)
n− j + 1

)

+θ(k − j − 1)

(

S(j) − S(n− j + 1)− S(k) + S(n− k)
k − j +

2S(k)

k

)

,

g3,1(n, j, k) =
S(n− j + 1)− S(n+ 1) + θ(j − k) (4S(j + 1)− S(k + 1))

(j + 1)(k + 1)

+
θ(k − j)S(k)

(j + 1)(k + 1)
+ δjk

2S2(j) + S1,1(j + 1)− 3S1,1(j)

j + 1

+
θ(j − k − 1)

(j − k)

(

S(j − k)
(j + 1)

+
−S(j+1)+S(n−j+1)+S(k)−S(n−k+1)−S(j−k)

(k + 1)

)

+
θ(k − j − 1)

(k − j)

(−S(k − j)
(j + 1)

+
3S(k − j)
(k + 1)

)

,

g3,2(n, j, k) =
2S(j + 1)− S(j) + S(n− j + 1)− S(k + 1)− S(n− k) + 2S(n+ 2)

n+ 2

+
−2S(j + 1)− 2S(n − j + 1)− S(k) + S(n − k)

k + 1

+θ(j − k − 1)
S(k + 1) + S(n− k + 1)

k + 1

+θ(k − j)S(j) − S(n − j + 1) + 2S(k − j)
k + 1

,

g4,1(n, j, k) =
−S(j + 1)− S(n − j + 1)− S(k + 1)− S(n− k + 1) + 2S(n+ 2)

k + 1

+
−2S(j + 1)− 2S(n − j + 1) + 1/(n − k + 1)

n− k + 1
,
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g4,2(n, j, k) =
S(n− j + 1)− S(n+ 2)

j + 1
+

2S(k + 1)

k + 1

+θ(j − k − 1)

(

4S(j + 1)− S(k + 1)− S(j − k)
j + 1

+
−S(j)− S(k + 1)

k + 1

+
S(n−j+1)−S(n−k+1)+S(j−k)+S(j−k−1)

k + 1

)

+θ(k − j)3S(k + 1)− 2S(k) − S(k − j)
j + 1

. (D.8)

Besides g3,1, which is degree 3, the remaining gi are degree 2. It follows from (D.6) that

all of the fi are degree three. The degree of the gi could be made manifest by replacing all

the factors of the form 1/(i+1) with S(i+1)−S(i), but this would lead to much lengthier

expressions.

E. Homogeneous solutions for h1

Recall that the psu(1, 1|2) quadratic Casimir J2 has eigenvalues j(j+1) for all nonnegative

integer psu(1, 1|2) spin j. The first type of homogeneous solution for h1 is specified by its

eigenvalues cj on spin-j states. However, for acting on general spin-chain states, we need

to change to a “position” basis. This can be done by expanding the spin-j states in terms

of two-site position states. The change of basis yields a representation of h1 in terms of

shifts δfl of the seven coefficient functions fl, which were given in the previous section.

Again, psu(1, 1|2) symmetry relates the coefficients, so all components can be written in

terms of δf1, δf2, and δf4. After significant simplification, we obtain the following. First

the bosonic components δfl for l = 1, 2 are given by

δfl(n, j, k)=
1

2
(n−k)!(n−j)!

n
∑

i=0

(

(n− i)!
(n+i+1)!

Cl(i, ci)

×3F
reg
2 (−j,−i,−i;1,n−j−i+1;1)3F

reg
2 (−k,−i,−i;1,n−k−i+1;1)

)

,

C1(i, ci) = i ci−1 + (2 i+ 1) ci + (i+ 1) ci+1,

C2(i, ci) = −i ci−1 + (2 i+ 1) ci − (i+ 1) ci+1. (E.1)

The j appearing here is the number of derivatives initially on the first site, and should not

be confused with a psu(1, 1|2) spin. Next, the mixed boson-fermion interactions coefficient

δf4 is similar (but note that some arguments are shifted by 1),

δf4(n, j, k) = (n−k)!(n−j+1)!

n
∑

i=0

(

(n− i)!
(n+i+2)!

(i+1)(ci+ci+1) (E.2)

×3F
reg
2 (−j,−i−1,−i;1,n−j−i+1;1)3F

reg
2 (−k,−i−1,−i;1,n−k−i+1;1)

)

.

Here we use the Mathematica definition of the regularized hypergeometric function, which

is a ratio of the ordinary hypergeometric function and gamma functions. In particular,

3F
reg
2 (a1, a2, a3; b1, b2; z) =

3F2(a1, a2, a3; b1, b2; z)

Γ(b1)Γ(b2)
. (E.3)
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The remaining components of this homogeneous solution are then given by

δf3(n, j, k) =
n− k

(k + 1)

(

δf1(n, j, k) − δf4(n, j, k + 1)
)

,

δf5(n, j, k) = δf2(n, j, k) − θ(n− k − 1)δf3(n, j, k),

δf6(n, j, k) =
(n+ 1− j)
n− k + 1

δf3(n + 1, j, k) + δf4(n, j, k),

δf7(n, j, k) = −(n+ 1− j)
n− k + 1

δf3(n + 1, j, k) − δf5(n, j, k). (E.4)

One can check this expression, at least numerically, by evaluating its commutator

with leading order psu(1, 1|2) generators, which vanishes. Also, substituting the known

eigenvalues for the one-loop dilatation generator, cj = 4S(j), yields perfect agreement

with the fl given in section 3.4 of [63]. Note that the expressions for the fl given in [63]

include square root factors that we have factored out here.
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[47] S. Schäfer-Nameki, M. Zamaklar and K. Zarembo, How accurate is the quantum string

Bethe ansatz?, JHEP 12 (2006) 020 [hep-th/0610250].

[48] A.V. Kotikov, L.N. Lipatov, A. Rej, M. Staudacher and V.N. Velizhanin, Dressing and

wrapping, J. Stat. Mech. (2007) P1010003 [arXiv:0704.3586].

[49] J. Ambjørn, R.A. Janik and C. Kristjansen, Wrapping interactions and a new source of

corrections to the spin-chain/string duality, Nucl. Phys. B 736 (2006) 288

[hep-th/0510171].

[50] G. Arutyunov and S. Frolov, On string S-matrix, bound states and TBA, JHEP 12 (2007)

024 [arXiv:0710.1568].

[51] D.M. Hofman and J.M. Maldacena, Giant magnons, J. Phys. A 39 (2006) 13095

[hep-th/0604135].

– 45 –

http://jhep.sissa.it/stdsearch?paper=03%282008%29037
http://jhep.sissa.it/stdsearch?paper=03%282008%29037
http://arxiv.org/abs/0712.4068
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB748%2C24
http://arxiv.org/abs/hep-th/0601112
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB766%2C232
http://arxiv.org/abs/hep-th/0611269
http://jhep.sissa.it/stdsearch?paper=11%282007%29019
http://jhep.sissa.it/stdsearch?paper=11%282007%29019
http://arxiv.org/abs/0708.0672
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C066006
http://arxiv.org/abs/0712.2479
http://arxiv.org/abs/0712.2743
http://arxiv.org/abs/0805.4194
http://arxiv.org/abs/0802.0027
http://arxiv.org/abs/0804.2893
http://arxiv.org/abs/0805.4407
http://arxiv.org/abs/0805.4615
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C086009
http://arxiv.org/abs/hep-th/0311004
http://jhep.sissa.it/stdsearch?paper=03%282005%29013
http://arxiv.org/abs/hep-th/0501203
http://jhep.sissa.it/stdsearch?paper=10%282005%29044
http://arxiv.org/abs/hep-th/0509096
http://jhep.sissa.it/stdsearch?paper=12%282006%29020
http://arxiv.org/abs/hep-th/0610250
http://www-library.desy.de/cgi-bin/spiface/find/hep/www?eprint=arXiv:0704.3586
http://arxiv.org/abs/0704.3586
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB736%2C288
http://arxiv.org/abs/hep-th/0510171
http://jhep.sissa.it/stdsearch?paper=12%282007%29024
http://jhep.sissa.it/stdsearch?paper=12%282007%29024
http://arxiv.org/abs/0710.1568
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA39%2C13095
http://arxiv.org/abs/hep-th/0604135


J
H
E
P
0
7
(
2
0
0
8
)
1
1
4

[52] G. Arutyunov, S. Frolov and M. Zamaklar, Finite-size effects from giant magnons, Nucl.

Phys. B 778 (2007) 1 [hep-th/0606126].

[53] R.A. Janik and T. Lukowski, Wrapping interactions at strong coupling — the giant magnon,

Phys. Rev. D 76 (2007) 126008 [arXiv:0708.2208].

[54] Y. Hatsuda and R. Suzuki, Finite-size effects for dyonic giant magnons, Nucl. Phys. B 800

(2008) 349 [arXiv:0801.0747].

[55] J.A. Minahan and O. Ohlsson Sax, Finite size effects for giant magnons on physical strings,

Nucl. Phys. B 801 (2008) 97 [arXiv:0801.2064].

[56] M.P. Heller, R.A. Janik and T. Lukowski, A new derivation of Lüscher F-term and
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